This publication provides a framework and practical guide for cities to enhance their climate resilience in cooperation with the private sector. It draws examples of coastal city strategies and investments in the United States, Europe, and Asia to document international best practices, propose principles for stronger public-private cooperation, and evaluate approaches that are transferable based on a city’s context or risk profile.

Covering both municipal and business perspectives, with a focus on the built environment, real estate, finance, and insurance sectors, the research carries an eye toward mobilising funding and governance structures to effectively support climate resilience. A series of workshops in the case study cities with stakeholders from the government, industry, academia, and the non-profit sectors, as well as interviews with businesses on climate resilience strategies, were conducted to gather the insights.
BUILDING CLIMATE RESILIENCE IN CITIES WORLDWIDE

10 Principles to Forge a Cooperative Ecosystem
CONTENTS

07 About the organisations
 About the Centre for Liveable Cities
 About the Urban Land Institute

08 Foreword by Desmond Lee, Minister for National Development, Singapore

09 Foreword by Ed Walter, Global Chief Executive Officer, Urban Land Institute

10 Preface & Introduction

12 Chapter 1: Climate Change, Cities, and Resilience
 Climate change and its impacts
 The case for coastal cities
 Climate mitigation, adaptation, and resilience

18 Chapter 2: Partnering on Climate: The Business Case
 Built environment and the real estate sector: the connection with climate change
 The private sector’s role in partnership with government

28 Chapter 3: 10 Principles for Building Climate-Resilient Cities

 Envision
 Principle 1: Elevate resilience as a goal for all sectors and stakeholders
 Principle 2: Work across space, time, and organisations
 Principle 3: Leverage opportunities to enhance liveability

 Empower
 Principle 4: Provide transparency through data and knowledge sharing
 Principle 5: Strive for equity, access, and inclusion
 Principle 6: Spur united action through a common narrative

 Execute
 Principle 7: Nurture a culture of collaboration
 Principle 8: Embody flexibility in approaches and solutions
 Principle 9: Motivate the market, spur innovation
 Principle 10: Normalize green finance to fund projects

72 Chapter 4: City Case Studies

74 Singapore
90 Hong Kong
104 Rotterdam
118 New York
132 Miami

144 Chapter 5: Applying the Principles: Getting Started in Your City, Company, or Community
 Thinking globally, acting locally
 Lessons for cities and companies worldwide

150 References
 Notes
 Contributors
PROJECT TEAM

Centre for Liveable Cities, Singapore

Project team
- Elaine Tan, Deputy Director
- Kevin Fan Hsu, Senior Assistant Director
- Nicole Lum, Manager
- Heng Su Li, Manager
- Naufal Khan, Manager

Supporting agencies
- Building and Construction Authority
- Housing & Development Board
- Ministry of Communications and Information
- Monetary Authority of Singapore
- National Climate Change Secretariat
- National Parks Board
- PUB, Singapore’s National Water Agency
- Urban Redevelopment Authority

Urban Land Institute

Project team
- Katharine Burgess, Vice President, Urban Resilience
- May Chow, Senior Vice President, Asia Pacific
- Pauline Oh, Senior Vice President, Asia Pacific
- Augie Williams-Eynon, Senior Associate, Sustainability

Supporting staff
- Billy Grayson, Executive Director, Center for Sustainability and Economic Performance
- Leah Sheppard, Manager, Urban Resilience
- Elizabeth Foster, Manager, Urban Resilience

With support from

Civic Exchange
- Lawrence Lu, Programme Manager

Rotterdam Office of Climate Adaptation
- Johan Verlinde, Programme Manager

C40
- Jacqueline Lam, Deputy Regional Director for Southeast Asia and Oceania

Editor
- Koh Buck Song, Adjunct, Centre for Liveable Cities
- James A. Mulligan, Senior Editor, Urban Land Institute

Copyeditor
- Laura Glassman, Manuscript Editor, Publications Professionals LLC

Designer
- Wildtype Media Group

ABOUT THE ORGANISATIONS

About the Centre for Liveable Cities

Set up in 2008 by the Ministry of National Development and the then Ministry of the Environment and Water Resources, the Centre for Liveable Cities (CLC)’s mission is to distil, create and share knowledge on liveable and sustainable cities. CLC’s work spans four main areas — Research, Capability Development, Knowledge Platforms, and Advisory. Through these activities, CLC hopes to provide urban leaders and practitioners with the knowledge and support needed to make our cities better. For more information, visit www.clc.gov.sg.

CLC led the strategic direction, writing and research of this publication, as well as organised workshops and interviews, with support and collaboration from ULI.

About the Urban Land Institute

The Urban Land Institute is a global, member-driven organisation comprising more than 45,000 real estate and urban development professionals dedicated to advancing the Institute’s mission of providing leadership in the responsible use of land and in creating and sustaining thriving communities worldwide. ULI’s interdisciplinary membership represents all aspects of the industry, including developers, property owners, investors, architects, urban planners, public officials, real estate brokers, appraisers, attorneys, engineers, financiers, and academics. Established in 1936, the Institute has a presence in the Americas, Europe, and Asia Pacific regions, with members in 80 countries.

The extraordinary impact that ULI makes on land use decision-making is based on its members sharing expertise on a variety of factors affecting the built environment, including urbanization, demographic and population changes, new economic drivers, technology advancements, and environmental concerns.

More information is available at uli.org. Follow ULI on Twitter, Facebook, LinkedIn, and Instagram.

ULI supported the development of this publication by hosting workshops, collaborating on strategic direction and contributing research.
FOREWORD BY DESMOND LEE, MINISTER FOR NATIONAL DEVELOPMENT AND MINISTER-IN-CHARGE OF SOCIAL SERVICES INTEGRATION

As the world confronts the climate crisis, it is vital that cities and their stakeholders work together to mount a concerted response. This is all the more important as more than half the world's population lives in cities, and this will continue to grow.

As a low-lying city-state, Singapore faces an existential threat from climate change. We are taking decisive steps to reduce our carbon emissions while putting in place measures to protect our city and our people. We will need to sustain these efforts over the long haul. To do this, we have committed significant resources, designated lead agencies for climate action and coastal protection, and are incorporating new mitigation and adaptation measures into our infrastructure plans. We are also intensifying the planting of greenery to tackle the urban heat island effect, and ensuring that critical infrastructure is constructed at least 5m above today’s sea level.

However, climate change affects all of us, and everyone has a part to play. As the COVID-19 pandemic has shown, we must mobilize the whole of society to address this very serious threat. Public agencies, the private sector, and the community must collaborate through Alliances for Action to come up with feasible and workable solutions, put them into practice, and make them our way of life.

“Building Climate Resilience in Cities Worldwide: 10 Principles to Forge a Cooperative Ecosystem” arose out of the spirit of international partnership, benefiting from the support of Civic Exchange in Hong Kong, the Rotterdam Office of Climate Adaptation, the Office of the Mayor in New York City, and C40, all of whom contributed case studies or co-facilitated workshops. I would like to thank these organisations and other individual contributors who have generously shared their knowledge in this publication.

Our ultimate response to climate change cannot be to protect the status quo. Instead, we must strive for solutions that respect the natural environment, and generate new opportunities for communities. By forging a cooperative ecosystem, we will grow cities that are more liveable, sustainable and resilient to challenges, including climate change.

Desmond Lee
Minister for National Development and Minister-in-Charge of Social Services Integration, Singapore

FOREWORD BY ED WALTER, GLOBAL CHIEF EXECUTIVE OFFICER OF THE URBAN LAND INSTITUTE

In 2020, the coronavirus pandemic, increasing societal recognition of long-standing racial inequality, and an active hurricane and wildfire season have demonstrated the urgent necessity of building resilience to interconnected social, economic, and environmental issues. As the leading organization in the world of real estate, the Urban Land Institute recognizes the essential role of the private sector in rising to that occasion, and, in particular, supporting cities and the built environment to be more prepared for the impacts of climate change.

Climate change is already having a significant impact on the places where we live, work, learn, and play, and recognition is growing across the real estate industry that now is the time to take action. Unifying the efforts of the private and public sectors is key to that process, as neither can achieve the goal of enhanced resilience alone. ULI’s Urban Resilience program and Center for Sustainability and Economic Performance continue to convene stakeholders and leaders across companies, communities, and governments to determine how best to mitigate climate risks, adapt to the increasingly apparent impacts of climate change, and form partnerships that benefit everyone.

To that end, ULI has been proud to partner with the Singapore Ministry of National Development’s Centre for Liveable Cities on this important publication. International collaboration is vital in a time of global crises, and the partnership has created opportunities of exceptional value. This research effort presented a unique chance to transcend oceans, national borders, and time zones to gather input from ULI members and experts from around the world through workshops on how to build a cooperative ecosystem for resilience. The lessons learnt and the connections made through this diverse collection of contributors provide new insight into the possibilities for global exchange and knowledge sharing on cities and climate.

It’s clear that changing market conditions will require the real estate industry to adapt. As a former CEO of a real estate investment trust, I know firsthand the value of thoughtful, proactive action for protecting and enhancing the assets and infrastructure we rely on. While much of our discussion of climate change has focused on risk, the need to build resilience is also an opportunity to think deeply about value creation, for the sector and the communities we serve. The COVID-19 pandemic has shown that collaboration, and leadership from government, are essential for managing acute shocks and chronic stresses. I hope this book will encourage the continued cross-sector and cross-border engagement of ULI’s global membership, and the industry at large, in meeting the challenges ahead.

W. Edward Walter
Global Chief Executive Officer, Urban Land Institute
BUILDING CLIMATE RESILIENCE IN CITIES WORLDWIDE

INTRODUCTION

Cities around the world must expect to deal with climate challenges greater than ever before; some are already facing these today. A myriad of risks, ranging from more extreme weather, the wider spread of hitherto “tropical” diseases and rising sea levels, loom ahead, threatening cities’ functions and the well-being of their residents. The urgency to act on the issue is more apparent for cities that are nexuses of human and economic activity. One way to build resilience lies in a city’s urban landscape and built environment, which play key roles in protecting communities, alleviating potential impacts and unlocking co-benefits.

However, transforming cities to become resilient to the impacts of climate change can be an immense challenge — one that cannot be tackled in isolation or without consideration for the economy, public health and the overall quality of life for city-dwellers. A cooperative ecosystem is hence paramount, one in which government and the private sector cooperate to mobilise resources, innovate, empower stakeholders and support one another in the work of building resilience.

In the past year, the Centre for Liveable Cities and the Urban Land Institute have collaborated on a multi-city study (Singapore, Hong Kong, Rotterdam, New York and Miami) to produce a publication that seeks to provide an actionable guide for cities to enhance their climate resilience in cooperation with the private real estate and land use sector.

The research draws examples of coastal city strategies and investments, documents international best practices, proposes principles for stronger public-private cooperation, and evaluates approaches that are transferable based on a city’s context or risk profile. It covers both municipal and business perspectives, focusing on the built environment, real estate, finance and insurance sectors, with an eye toward mobilising funding and governance structures to effectively raise resilience against the effects of climate change.

Under the three themes of Envision, Empower and Execute, the 10 principles for building climate resilience offers a framework for stakeholders in the city — public officials, the private sector, civic organisations and the community — to create an enabling environment in which everyone is aligned to our common goal of achieving climate resilience. By integrating our efforts, we can surpass limits, unlock new value and realise synergies for transformative change.

With ULI as a longstanding partner in knowledge sharing, CLC looks forward to continuing the joint commitment to foster liveable cities that are dynamic, vibrant, cohesive, sustainable and climate resilient.

Khoo Teng Chye
ULI APAC Vice-Chair and Global Governing Trustee Fellow at the Centre for Liveable Cities

Hugh Lim
Executive Director
Centre for Liveable Cities

PREFACE

The inception of this project was made possible by then Minister for National Development Lawrence Wong and ULI Asia Pacific Chair Nicholas Brooke, who had met in May 2019 and discussed the need to plan for climate resilience. Sure enough, this need was reinforced by Singapore’s Prime Minister when he called climate change a matter of “life and death” and “one of the gravest challenges facing humankind” at the National Day Rally in August 2019.

A series of workshops in the case study cities with stakeholders from governments, the industry, academia and civic organisations, as well as interviews on climate resilience strategies, were conducted to gather insights. At the workshops, participants discussed the state of play in their own cities — both challenges and opportunities — and the interventions needed for themselves and for others to move the resilience agenda forward.

The series of physical workshops was kick-started with Singapore on 26 August 2019, followed by Rotterdam on 1 November 2019, then New York on 6 February 2020. With the onset of the COVID-19 pandemic early in the year, Hong Kong’s workshop on 11 May 2020 shifted online while a virtual small-group conversation convened Miami stakeholders on 14 August 2020. These discussions helped distil a preliminary set of principles that were refined through additional consultation.

Participants across the five cities then reconvened for a global discussion at the online Expert Forum on 25 June 2020. A sharing of best practices facilitated cross-city learning and further augmented the principles.

In addition to the city workshops, the research looked deeper into the existing resilience efforts and plans of the five case study cities as well as those of others. This approach helped to refine the 10 principles, best practices and action steps that are widely applicable for building climate resilience.

This project came to fruition with the support of many and exemplifies the cooperative ecosystem that we are striving towards. We are honoured to have a diversity of partners contribute to this collective, global effort.

The COVID-19 pandemic shows that cities that have been the most resilient are those that have an integrated whole-of-society approach with good governance and well-planned execution. Therefore, I hope this project brings valuable insights as we journey towards a resilient, liveable and sustainable future.

Khoo Teng Chye
ULI APAC Vice-Chair and Global Governing Trustee Fellow at the Centre for Liveable Cities

Hugh Lim
Executive Director
Centre for Liveable Cities
CLIMATE CHANGE AND ITS IMPACTS

Earth’s climate is increasingly affected by human activities. Observed greenhouse gas emissions have increased by more than 130 parts per million from 1970 to 2017.1 Hard to ignore are increasingly extreme climatic conditions — hotter, wetter, colder, drier — and sea-level rise, as well as more intense and frequent storms, droughts, and wildfires.

The effects of climate change are vast and devastating. The World Meteorological Organization reported that 2015 to 2019 were the five hottest years on record.2 Since 1880, land and ocean temperatures combined have increased by 0.07°C per decade, more than doubling to 0.18°C per decade starting from the 1980s.3 Warming is experienced disproportionately: in equatorial cities like Singapore, surface air temperatures have risen by 0.25°C per decade since the 1950s, double the rate of the rest of the world.4 The global mean sea level has increased by more than 80 millimetres from 1993 to 2018,5 a phenomenon attributed to thermal expansion of oceans and global ice sheet melting caused by higher temperatures, which has accelerated in recent decades.6 The ice sheet in Antarctica alone could cause more than one metre of sea-level rise by 2100 and more than 15 metres by 2050.7 Rising temperatures are expected to cause more heat-related illnesses and deaths.8 Likewise, vector- and water-borne diseases are becoming common. Warmer and wetter climates are favourable breeding conditions for infectious agents and can worsen outbreaks of diseases such as dengue, while floods can encourage the spread of afflictions like malaria.9 Worsening disasters such as tropical storms, heatwaves, and wildfires loom.10

Economies will be badly hit by costly climate impacts. The U.S. Congressional Budget Office estimates that storm-related winds and floods cost the residential sector US$34 billion, commercial businesses US$9 billion and the public sector US$12 billion in losses every year.12 Wildfires impose similar consequences: the United States recorded more than US$12.55 billion of direct property damage caused by large-loss wildfires in 2018.14

Globally, about 2.4 billion people live within 100 kilometres of a coastline.

According to 2018 estimates, 55 percent of the world’s population resides in urban areas, and this proportion is expected to increase to 68 percent by 2050.13 As populations grow and urbanisation intensifies, an additional 2.5 billion people are expected to live in urban areas,16 many of them near the coast. To accommodate this increase, the world’s floor area is growing by 2.3 percent each year,17 with global building stock expected to double by 2060.18

While climate change affects communities worldwide, coastal cities are particularly vulnerable given their dense populations, extensive infrastructure, and geography. Globally, about 2.4 billion people live within 100 kilometres of a coastline. Of these, more than 600 million are in areas less than 10 metres above sea level,21 increasing their risks from sea-level rise and inundation. Coastal communities in subtropical regions may also experience more frequent and intense storms, as more heat and energy are trapped in oceans. The Fifth Assessment Report by the Intergovernmental Panel on Climate Change noted that hurricane rainfall will likely increase with enhanced warming influenced by human activity and higher atmospheric moisture content.22

As population and land use trends intensify, coastal cities will become even more vulnerable to climate impacts. Building the resilience of coastal communities against future climate shocks and stressors requires an integrated strategy of climate change mitigation and adaptation.
CLIMATE MITIGATION, ADAPTATION, AND RESILIENCE

Responses to climate change can be broadly categorised into climate change mitigation and adaptation, each contributing to resilience.23 Both approaches are integral to strengthening a city’s climate resilience and can be combined with efforts to enhance value and improve liveability and sustainability.

Climate change mitigation refers to measures that reduce greenhouse gas emissions or enhance carbon sinks.25 These include switching from fossil fuels to renewable energy or enhancing carbon sequestration through afforestation and reforestation. Such mitigation actions may slow the rate of global warming and reduce the severity of climate impacts.

Climate change adaptation refers to interventions that prevent, or soften, the real and anticipated damages caused by climate change.26 Adaptation strategies might range from building dykes and polders to manage rising sea levels, using natural and artificial shade to reduce the effects of rising temperatures, and changing behaviours to cope with adverse conditions.

Resilience — as defined by the National Academy of Sciences and adopted by the Urban Land Institute — is “the ability to prepare and plan for, absorb, recover from, and more successfully adapt to adverse events.”27 For climate resilience, the ability of a city to “bounce back” depends on the adaptive capacity of its systems28 — physical environments, businesses and institutions, communities and individuals — to survive and adapt to potential damage, and thrive by tapping into opportunities, in response to the chronic stresses and acute shocks of climate change.

The benefits of resilience investments are reaped in the short and long terms, through times of calm and in crisis. These benefits are known as “resilience dividends”,29 which include economic growth, job-creation, improved social infrastructure, an enjoyable public realm, ecological vibrancy, and stronger community bonds.

Cities are made up of diverse stakeholders — governments, the private sector, civic organisations, academic institutions, residents — who are all affected by climate change in terms of finances, quality of life, or the environment. Building climate resilience involves a holistic “whole-of-society” effort: more than individual actors pursuing mitigation or adaptation. These stakeholders need to cooperate to build an enabling ecosystem in which they can mobilise their resources and empower each other to strengthen climate resilience.
Chapter 2

PARTNERING ON CLIMATE: THE BUSINESS CASE

Photo courtesy of Alexandr Hovhannisyan on Unsplash.
BUILT ENVIRONMENT AND THE REAL ESTATE SECTOR: THE CONNECTION WITH CLIMATE CHANGE

RISKS

The risks to real estate are becoming increasingly apparent. In a global study by Four Twenty Seven and GeoPhy, which assessed the exposure to physical risks of more than 73,000 properties owned by 350 listed real estate investment trusts, 35 percent of the properties were found to have a high probability of experiencing medium- to high-impact events. Of these, 17 percent are exposed to inland floods, 15 percent to storms, and 6 percent to coastal floods and sea-level rise. These figures are alarming in their own right, and also a reminder of the limitations of existing climate risk data sets — current data is not yet able to incorporate the effects of potential building or infrastructure resilience interventions that may reduce risk.

The whole city, including its built environment and operations, can break down when exposed to the physical impacts of climate change. Stronger storm events can cripple critical infrastructure and services such as transport networks and airports. In addition to physical damage, asset values of unprotected properties may drop, affecting not just the occupants, but also harming finances (revenues, expenditures, assets and liabilities, and capital and financing) of building owners in the long run. A study on U.S. residential properties found that those at risk of flooding were sold at a 7 percent discount compared to those that were not.2 This effect increased with greater consumer awareness of global warming — a phenomenon that will continue as awareness of the impacts of climate change increases. Meanwhile, insurance policies may not be able to cover mounting losses.

A myriad of climate-related risks threaten the built environment and real estate sector, categorised into physical risks and transition risks that affect infrastructure, finances, and business models.

Climate-related risks for businesses

<table>
<thead>
<tr>
<th>Physical risks due to climate events and longer-term effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
</tr>
<tr>
<td>Climate disasters such as storms, heatwaves, and wildfires</td>
</tr>
<tr>
<td>Chronic</td>
</tr>
<tr>
<td>Longer-term shifts in climate patterns, which cause chronic effects, such as sea-level rise, drought, and heat stress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transition risks associated with the ongoing global transition towards a resilient and low-carbon economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy and legal</td>
</tr>
<tr>
<td>Policies that limit emissions, promote climate mitigation and adaptation, and restrict land use change</td>
</tr>
<tr>
<td>Litigation risks tied to claims for climate losses and damages</td>
</tr>
<tr>
<td>Technology</td>
</tr>
<tr>
<td>Technological improvements and innovations that affect business operations, supply chains, competitiveness, and costs</td>
</tr>
<tr>
<td>Supply chain and market</td>
</tr>
<tr>
<td>Shifts in demand and supply for raw materials, commodities, supplies, and services as climate risks and opportunities are considered</td>
</tr>
<tr>
<td>Reputation</td>
</tr>
<tr>
<td>Tied to changing customer/community perceptions of an organisation’s response to climate change</td>
</tr>
</tbody>
</table>

Opportunities for businesses

<table>
<thead>
<tr>
<th>Resource efficiency and life-cycle value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achieving cost savings through better efficiency in energy sources, building materials, and operations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buildings and assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovating, designing and developing resilient, low-emission buildings and assets to enhance competitiveness and maintain long-term value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consumers and markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanding to new markets and asset classes for diversification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Services and business models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitalising on specialised knowledge, consultancy, and developing new contracts, financial models, or development typologies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organisational transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing an organisation’s long-term thinking and adaptive capacity to better manage risks and seize opportunities</td>
</tr>
</tbody>
</table>

Adapted from the Task Force on Climate-related Financial Disclosures.
Value generation can occur directly, through following ways:
- Real estate sector, cities and businesses in the building climate resilience creates value for the region. It has shown strong dividends on upfront investment.
- Indirectly, resilience can provide returns through impacts while lowering electricity bills, or simply through better access to insurance coverage.

Fortunately, climate change adaptation is not only about higher risk — it also creates openings to reduce costs, build asset value, and boost competitiveness in an evolving market. Notably, a recent economic analysis of adaptation options in Southeast Florida by the Urban Land Institute (ULI) and AECOM found that every US$1 invested in building-level strategies would generate US$4 in benefits for the region. 7

Value generation can occur directly, through preventing damages from intense climate events or implementing solutions that simultaneously reduce climate risk exposure and operations expenses (like reflective roofs or impact-resistant windows, which protect against heat and storm impacts while lowering electricity bills), or simply through higher property values.

Indirectly, resilience can provide returns through faster lease-up, increased rental or sale prices, lower insurance premiums, and the advantage gained through improved company branding and marketing, particularly key as consumer awareness and preferences for resilient spaces continue to rise. ULI’s report Returns on Resilience: The Business Case profiles 10 resilient developments that have shown strong dividends on upfront investment. Building climate resilience creates value for the real estate sector, cities and businesses in the following ways:

OPPORTUNITIES AND BENEFITS

Building Longevity and Efficiency
- Increased likelihood of business continuity and productivity
- Decreased liability with ability to withstand and recover from disaster
- Long-run cost savings from greater energy efficiency, and avoided maintenance and capital improvements
- Reduced disruptions from transition risks

Financial Performance
- Enhanced long-term asset viability and value
- Avoided costs for recovery from extreme events
- Increased productivity of building occupants
- Improved sales and rents from increased demand and added foot traffic

Liveability and Survivability
- Enhanced liveability and economic vibrancy in the local area
- Improved tenant satisfaction and occupant safety and well-being
- Sustained energy reliability during shocks
- Increased protection for surrounding communities, which preserves flow of revenue

Marketability and Corporate Social Responsibility
- Greater buy-in from stakeholders such as governments, investors, tenants, buyers, and consumers
- Enhanced reputational value while fulfilling environmental responsibility
- More competitive insurance premiums or better access to insurance coverage
- Enhanced access to better financing options

Adapted from the Urban Land Institute’s Scorched: Extreme Heat and Real Estate.

CASE STUDIES: RETURNS ON RESILIENT BUILDINGS AND INFRASTRUCTURE

EY Centre
Sydney, Australia
Developer: Mirvac Projects
Architects/Designers/Engineers: Francis Jones Morehen Tharp

The EY Centre is a 37-story office building that exemplifies heat-responsiveness and thermal efficiency. Its closed-cavity facade system made of timber and glass reduces influence from external ambient conditions and allows automatic adjustment for light and temperature control. This allows deflection of unwanted solar heat gain, which is fast becoming a threat in Australia. The building also houses an array of smart sustainability features such as structural control oil dampers to lower building sway. In addition, to preserve the area’s history, the building is integrated into the existing urban fabric through design and placemaking.

Value creation:
- 30 percent reduction in overall heating and cooling costs (estimated $A188,800)
- Uplift in asset value (estimated $A3.7 million market value)
- Enhanced long-term operational performance
- Enhanced user well-being and comfort

Photo courtesy of Mirvac Projects.

Nihonbashi Muromachi Mitsui Tower
Tokyo, Japan
Developer: Mitsui Fudosan Co. Ltd

The 26-story, mixed-use office building has a large-scale gas co-generation energy plant to provide power and heat to 20 neighboring buildings. Besides sustainability initiatives in terms of building specifications, technology, and energy performance ratings, the building includes modern seismic features such as structural control oil dampers to lower building sway. In addition, to preserve the area’s history, the building is integrated into the existing urban fabric through design and placemaking.

Value creation:
- Provided redundant energy supplies to the neighbourhood when the national metropolitan grids were out during the Great East Japan Earthquake in 2011
- Estimated 30 percent reduction in CO2 emissions
- Enhanced the urban fabric for the Nihonbashi Revitalisation Plan

Photo courtesy of Mitsui Fudosan Co. Ltd.

Stonebrook Estates
Texas, United States
Developer: Terra Visions LLC
Architects/Designers/Engineers: Aguarre & Feldt LP, R. G. Miller Engineers Inc.

A 51.4-acre private residential development, Stonebrook Estates uses a hybrid stormwater management system comprising natural drainage and traditional storm sewer, linked to an interior detention basin.

Value creation:
- Withstood the Tax Day and Memorial Day floods in 2016
- Average home prices about 15 percent higher than expected (about $US500,000), even after the 2014 downturn
- The natural drainage system reduced the site detention requirement by 24 percent, which increased lot yield
- Green amenities such as trail systems, water features for residents

Photo courtesy of Terra Visions LLC.

Adapted from the Urban Land Institute’s Returns on Resilience and Developing Urban Resilience website.
CASE STUDIES: RETURNS ON RESILIENT BUILDINGS AND INFRASTRUCTURE

Arverne by the Sea
New York, United States
Public-private partnership
Developers: The Benjamin Companies, The Beechwood Organization

Arverne by the Sea is a 120-acre mixed-use neighbourhood with 2,296 residential units. Hurricane Sandy had hit midway through construction, but the area emerged largely unscathed because of its resilience features and thus became a disaster response hub for the peninsula.

Its resilience features include natural barriers such as beaches and dunes; an underground stormwater drainage system alongside waterproofed utilities; raised homes at least 3 ft above street level with reinforced foundations and durable, low-emissions installations; and streets designed to reduce wind impact.13

Value creation:
- Minimal water-, wind- and fire-related damage post-Sandy
- US$100 million in resilience investments with 10 to 15 percent returns
- Higher-than-market rental and prices
- Cost savings for homeowners on insurance premiums GmbH
- Enhanced reputation of community and company

Photo courtesy of Arverne by the Sea LLC.

HafenCity
Hamburg, Germany
Public-private partnership
Master Developer: HafenCity Hamburg GmbH
Architects/Designers/Engineers: Kees Christiaanse, KCAP/ASTOC et al

Situated in the flood zone, the 127 ha HafenCity has been undergoing redevelopment since 1997. It is elevated on three levels — from areas designed to flood (0 and 4.5 m above sea level), to buildings on artificial compacted mounds 8 m above sea level.

Shops at the promenade level are retrofitted with floodgates, water-tight glass windows and doors, and remain accessible from an elevated entryway. Public spaces and walkways are designed to move in tandem with the water. HafenCity’s energy mix is 92 percent from renewable sources, and developers are required to obtain a Gold Environmental Label.12

Value creation:
- Avert losses from periodic flooding
- Maintain accessibility to public space and quality of the environment
- Estimated to accommodate 12,000 residents and 45,000 workers by 2025
- The wind-protected and temperature-responsive Underve building was one of the first buildings to be constructed, achieving reduced power consumption by up to 70 percent; many architectural and building awards; investment from real estate fund HOCHTIEF Projektentwicklung GmbH

Photo courtesy of HafenCity Hamburg GmbH.

Adapted from the Urban Land Institute’s Returns on Resilience and Developing Urban Resilience website.

THE PRIVATE SECTOR’S ROLE IN PARTNERSHIP WITH GOVERNMENT

The impacts of climate change will cost the global economy a gross domestic product loss of 3 percent by 2050, according to the Economist Intelligence Unit.14 Indeed, adapting to climate change will require significant investment; for example, in Singapore, the government expects to spend approximately S$100 billion on adaptation over the next hundred years to address sea level rise and flooding.15 However, these investments are needed to protect communities and economies, as well as nurture the ongoing demand for urban living and generate opportunities for capturing new sources of value. Given the scope of the challenge, it is clear that there is a strong partnership role for the private sector to complement government responses.

Businesses can be actors and enablers of climate action by reducing their emissions, enhancing their adaptive capacity, funding much-needed building and infrastructure interventions and supporting other stakeholders to take action.

Furthermore, they can grow the resilience workforce, unlock co-benefits, invite citizen participation, pioneer innovations and test solutions, engage in public-private partnerships for climate-resilient investments and nurture cross-industry collaboration for knowledge-sharing. In so doing, they contribute to the economic, societal, and environmental transformation required for resilience.

Beyond improving individual buildings, coordination among the private sector, the government, and the public is crucial to align business priorities and the government’s socioeconomic goals. Hardening one property to survive the effects of a storm means little if public transport fails and neighbouring businesses are flooded — the district as a whole remains vulnerable. If all stakeholders incorporate climate resilience into their collective game plans, cities will experience transformative progress that can be sustained over time.
A take on the resilience ecosystem, built on collaboration, co-creation of solutions, and innovation between stakeholders who pool their strengths to enhance resilience.
10 PRINCIPLES FOR BUILDING CLIMATE-RESILIENT CITIES

Chapter 3

The Berkelplein water plaza in Rotterdam. Photo courtesy of Erik Fecken.
As set out in earlier chapters, addressing the challenges of climate change requires collective action by multiple stakeholders: governments, the private sector, civic organisations, research institutions, and individuals. Contributions from all these groups will be essential for transformative change.

How can stakeholders be encouraged to protect cities and communities against the worst effects of climate change? What can spur stakeholders to look beyond individual concerns, to commit to firm action and work for real change, driven by a responsibility to the common goal of building a climate-resilient city, with a “stable society and a healthy environment” for all?

This chapter offers a framework for how the private sector, public officials, community groups and other stakeholders can together create a cooperative ecosystem for climate resilience. The key ideas encapsulated within the principles are drawn from workshops with industry leaders in five cities around the world. Practical action steps are guided by the 10 principles, organised under three themes: Envision, Empower, Execute.
The BIG U proposal to protect Lower Manhattan in New York City, developed by a consortium of private sector experts in partnership with the city government.

To develop robust plans for creating a more climate-resilient city, the values of different stakeholders must first be understood and taken into account. The built environment, and the decision-making processes which lead to urban development outcomes, offers many examples, showing how public dialogues can help inform planning and design and turn potential opponents into allies.

In the United States, New York City's Economic Development Corporation has incorporated methods to reach a broad array of stakeholders into many development proposals which face climate risk, such as waterfront redevelopments. EDC profiled its Financial District and Seaport Interactive Open House as an entertainment and "see-and-be-seen" event, thus reaching a much broader audience. Families and youth — not just land use or environmental experts — came together to share ideas on climate risks, the city's plans, and potential solutions.

Likewise, Miami's resilience master plan, Resilient 305, held public engagement sessions that included linguistically and ethnically diverse communities, as well as economically disadvantaged groups — a key step for a region in which over 50 percent of the population was born in another country. Conducted over a period of three years, participation by thousands of stakeholders in public meetings, focus groups, and surveys was essential to developing the plan’s resilience strategies and building support.

The role of broad public participation in Miami's resilience plan and those of other cities created through the Rockefeller Foundation’s 100 Resilient Cities initiative, underscores the importance of evaluating diverse values gathered through meaningful public engagement.

Build climate change literacy to help communities articulate their values

Awareness is growing among many stakeholders of how climate change can affect their personal lives and livelihoods, which allows them to determine their own specific priorities and communicate their values. Knowledge experts can lead outreach and education campaigns to stimulate community interest and enhance capacity to engage on local climate issues.

The Singapore Sustainability Academy was established by property developer City Developments Limited (CDL) and the Sustainable Energy Association of Singapore to promote awareness on sustainability and provide space to civic organisations to conduct public education programmes on climate change-related topics, from youth involvement to food waste.

ACTION STEPS

Consult broadly to appreciate the diverse values of stakeholders

By framing climate challenges in ways that highlight the interests of all parties, society can spur greater cooperation. The following three principles address the idea of “adopting a resilience mindset”, a critical first stride towards achieving climate resilience.

PRINCIPLE 1: ELEVATE RESILIENCE AS A GOAL FOR ALL SECTORS AND STAKEHOLDERS

A city’s resilience is shaped by all who participate in its social, economic, and environmental systems, not merely by its location or infrastructure. A central goal of resilience-building is not simply to prepare for the climate and weather-related events an area will experience, but to acknowledge and reduce the compounding challenges that make residents vulnerable in the first place. These challenges exist primarily as functions of unaddressed inequities such as poverty, racial or ethnic discrimination, unaffordable housing, or disparate access to healthcare. 2

To address these broad and interconnected issues, resilience must be conceptualised as a cross-cutting idea that should be embedded into all aspects of public, private, and community governance and function. Different sectors must support each other and find ways to incorporate the diverse values, needs, and interests of various stakeholder groups if a city is to become more prepared for the multifaceted challenges of a changing climate. Government, business, communities and households all have a critical role to play to help cities be more prepared for the impacts of climate change and to strengthen community networks and adaptive capacity.
Resource and knowledge banks can also be developed to bridge the gap between climate science and public understanding.

- Non-governmental organisations (NGOs) 5G Climate Rally and Speak for Climate developed the Greenwatch Initiative to provide a guide to parties’ proposed policies on carbon emissions and waste. This allows people to assess the different sustainability goals and helps build a better understanding on the policy directions and options towards climate issues.

Reflect the goals of resilience in solutions that fund recovery and adaptation

Finding financial resources and solutions to respond to the costs of climate adaptation is a challenge, as is moving the market to a reckoning with such a complex issue. Moreover, financial recognition of physical climate risk could change quickly with shifts in one market dynamic, such as insurance or the availability of disaster recovery funding.

Nonetheless, to align with the aim of resilience-building as reducing vulnerability to climate risks, the mechanisms that pay for adaptation and recovery measures are slowly recognising resilience as an essential goal. For example, an insurance system that looks only at restoring systems or buildings to nearly identical pre-disaster conditions will not reduce a community’s vulnerability. Instead, insurance providers should identify resilient development strategies which are practical for the building or site — such as design strategies, building code enhancements and even changes to building location — and provide incentives such as reduced premiums for the incorporation of these approaches. As the industry begins to integrate climate concerns into its risk modelling and pricing practices, it can support a broad resilience vision by rewarding better design that promotes preparedness and resilient (re)construction, and integrates a “build back better” approach for climate risk management.

Insurers and reinsurers are engaging with the resilience conversation and are key stakeholders, especially as vulnerable areas experience climate events more regularly and climate risks begin to affect new areas. Some programmes that reflect resilience goals are already available.

- FORTIFIED, a programme by the U.S. Institute for Business and Home Safety, works with reinsurers to promote voluntary post-disaster reconstruction based on an improved set of building standards. Its FORTIFIED Roof Standards encourage homeowners to adopt science and engineering-based standards for better wind and hail protection and so become eligible for premium discounts. In a study by ULI on FORTIFIED in Alabama, use of the code has been proven to enhance property values.

Besides insuring for conventional financial damage from acute events, insurance mechanisms that enlarge coverage to include losses from climate stresses (e.g., both wetter and drier weather leading to crop yield drop) will assist with industry and government efforts to better understand and prepare for chronic climate change impacts.

- The Philippine Crop Insurance Corporation is expanding coverage by piloting new insurance techniques such as weather-based index insurance and area-yield crop insurance, which protects farmers if prolonged wet weather or droughts significantly reduce agricultural yields.

As the industry begins to integrate climate concerns into its risk modelling and pricing practices, it can support a broad resilience vision by rewarding better design that promotes preparedness and resilient (re)construction, and integrates a “build back better” approach for climate risk management.

Broadly incorporate sustainability/ resilience considerations in land use policy and planning

Meaningfully adapting to climate change will require the use of a broad range of regulatory, design and development tools. Land use is perhaps one of the clearest arenas for climate adaptation solutions: how properties, neighborhoods, cities and regions are built and patterned can mitigate or exacerbate the climate risks they face. Physical climate risks also intersect in complex ways with pre-existing stresses, such as the availability of affordable housing or the distribution of density within a city or larger region, that can be affected by land use policy, making it a ripe area for intervention.

Proactive land use solutions that address climate risks consider how and where is best to develop, given which parts of a city are at higher risk, and shift future development into safer areas through strategies such as zoning, development incentives and investment in infrastructure and transit. The prospects for densification must be balanced with supporting communities who currently occupy the riskiest areas. These communities, many of whom have been marginalised by land-use policy for generations, should be supported and included in determining how land use evolves (See Principle 5: Strive for Equity, Access, and Inclusion).

In addition, how land use is regulated can greatly affect the future resilience of development projects. Private sector planning and design actors can explore the restructuring of current zoning codes and planning parameters for resilience and environmental objectives, aside from satisfying financial requirements for “highest and best use”.

- In China, multi-disciplinary consultancy Arup and the Beijing Urban Planning and Design Institute developed an innovative zoning plan, after the completion of the Master Plan for Beijing’s Changxindian area, with local government support. A set of low-carbon zoning codes that incorporated sustainable performance indicators on energy, waste, ecology, and transport are intended to overcome the limits of current planning parameters to achieve more ambitious energy, resource, and emissions objectives. To ensure that sustainability objectives were met, targets and technical requirements for individual sites and block levels were prescribed directly into the statutory zoning plans, resulting in the initiative winning multiple global as well as national planning awards.
PRINCIPLE 2: WORK ACROSS SPACE, TIME, AND ORGANISATIONS

Resilience is best promoted when stakeholders conceive of the challenge across space and time, and work beyond their own organisations.

Operating across space, a climate-resilient city knits together protection of individual buildings or sites with coordinated action at the level of the neighbourhood, district, city, and beyond. Many issues are addressed more effectively as a collective, and economies of scale emerge when stakeholders can rely on — and contribute to — a common service or solution.

Working across time scales, stakeholders should evaluate their approach to resilience for the long term. Long-term thinking is required to address climate change, as resilience challenges will last decades, if not centuries.

In pursuit of resilience, stakeholders should expand their approach beyond their business interests or traditional responsibilities by reaching across sectoral boundaries, connecting to allied industries, and considering both hardware (infrastructure) and software (community). Such coordination across firms, sectors, and industries prevents one party’s actions from undercutting those of others. A harmonised ecosystem in which stakeholders navigate spatial, temporal, and organisational scales will enjoy greater returns on investments in resilience.

ACTION STEPS

Look beyond a city’s borders: cooperate regionally

A resilient ecosystem thrives on galvanising broad coalitions.

- In the United States, the Southeast Florida Regional Climate Change Compact, a four-county collaboration on adaptation policy, features four local governments joining forces to address climate challenges, such as sea-level rise (see Miami Case Study on p. 88). The counties pool resources in coordinated efforts that align with the regional vision, and provide guidance to local municipalities in developing local resilience strategies.

Build self-sufficiency into “complete neighbourhoods”

If a city has self-sufficient, mixed-use neighbourhoods, it can be more efficient in its emergency response, continuity, and recovery during intense environmental stresses and shocks. Events like COVID-19 have changed the way we live and work, spurring demand for “complete neighbourhoods” where residents have safe and convenient access to critical utilities and services. Cities such as Toyama, Japan, and Paris, France, are moving towards this paradigm. The mayor of Paris has advocated a “15-minute city” where housing, work, education, leisure, and health and well-being are all accessible by walking or cycling within that ambit. With more nodes of amenities and activities, if a city is affected by flooding, businesses outside the flood zone can still function, instead of relying on a single at-risk central business district.

Maximise synergy between local solutions and large-scale initiatives

Decentralised smaller-scale solutions can complement large-scale projects and be seen as components of overall resilience initiatives. Governments, planners, and the private sector can ensure that solutions — regardless of their scales — are synergistic, to maximise their coordinated strengths.

- In Singapore, while the government works to upgrade the city-state’s drainage network, any development larger than 0.2 hectares (about half an acre) must also install its own stormwater detention tank system to reduce the burden on the overall system.

With constant stress on public stormwater infrastructure from rising precipitation, a stormwater fee can also incentivise developers to reduce impervious surfaces on their properties and add stormwater detention tanks and green infrastructure, such as rain gardens. Also common in the United States, the fee is used to fund maintenance and upgrades of the municipal system.
Develop strategies using time frames that transcend political cycles and recessions

Climate solutions that transcend political terms would have greater longevity and long-term value.

- In the Netherlands, the Delta Commissioner, an apolitical officer appointed every seven years as head of the Delta Programme, oversees climate and water-related issues. This appointment is delinked from the typical five-year political election cycle, insulating the office from political changes. Longer time horizons also benefit environmental/economic impact assessments regarding the viability of capital projects and infrastructure investments. A dedicated long-term budget for resilience building, such as the Delta Fund, can also safeguard project financing through economic downturns.

Overall, short-, medium-, and long-term resilience plans would be key in ensuring an adequate response to evolving climate risks. Stakeholders can develop a matrixed timeline of strategies in which imminent climate issues are promptly addressed and complex climate challenges are incrementally tackled. A future-forward approach that is constantly reviewed, and aligns with updated climate science, allows stakeholders to deliver more effective solutions.

Analyse co-benefits and impacts based on a building's full life cycle

The building industry increasingly recognises that greenhouse gas footprints and other environmental impacts should be measured across a building’s full life cycle. This includes acquisition, planning and design, construction and refurbishment, operations, maintenance, demolition, waste, and redevelopment. Resilience thinking can help the private sector identify synergies between life-cycle stages and potentially save on operations and maintenance costs. For instance, using photocatalytic concrete, a self-cleaning building material, in the construction phase could reduce energy consumption and downstream costs for repair or refurbishment.

Assess risk and resilience beyond immediate operations: evaluate supply chains and networks

Climate resilience must apply to the entire value chain. Supply chain breakdowns can disrupt the operations of businesses, communities, and cities. Hence, companies can formally incorporate climate change risks as part of their supply chain risk management strategy and enhance supply chain resilience through bridging (enhancing the capability of a supplier to withstand risk events and recover more quickly from a disruption) and buffering (protect the company from inevitable supplier failures and supply disruptions).

- Recognising the threats from climate change, Mars Corporation’s Sustainable in a Generation Plan looks beyond direct operations into its supply chain to reduce environmental impact and increase climate resilience. For a long time, the confectionery manufacturer has strived to operate solely on renewable energy, already achieving this goal in the United States and Mexico. Mars also calls on its suppliers to participate in climate action by setting science-based targets, signing on to the Climate Group’s RE100, and moving towards renewable energy. Olam, one of Mars’ suppliers of cocoa and palm oil, has signed on to this pledge.

Resilience thinking can help the private sector identify synergies between life-cycle stages and potentially save on operations and maintenance costs.
PRINCIPLE 3: LEVERAGE OPPORTUNITIES TO ENHANCE LIVEABILITY

Building climate resilience is more than resisting damage to property and infrastructure. It is also an opportunity to improve the community, reap co-benefits, and boost quality of life. Resilient cities ride out stresses and disturbances to eventually “build back better.” Both public and private adaptation projects can plug existing gaps and address fundamental inequalities, so that the city can enjoy a broader resilience dividend. Eventually, a “new normal” enhances the public realm; addresses ongoing inequalities; trains the next generation for jobs in emerging markets spanning resilience retrofits, green finance, and climate justice; and works to restore degraded ecosystems.

Above
An active water playground in Tasinge Plads, Denmark with climate-resilient features that encourage citizens to do their part in pumping water from retention systems. Photo courtesy of Tina Saaby.

Right and far right
The North Battery Park City Resiliency project in New York City aims to provide public benefits and enhance resilience through careful planning and design. Spaces are designed to be multi-purpose, allowing temporary storage of water during periods of high rainfall and enabling promenade access close to the water’s edge when rainfall is low. Photos courtesy of AECOM.

ACTION STEPS

Combine public space amenities and climate-resilient infrastructure projects
Public amenities can offer climate protection while fulfilling other public aspirations.

- Such a holistic approach to building public spaces by governments, NGOs, and the private sector is exemplified by Rotterdam’s Dakpark, a rooftop park incorporated into a dyke in the Netherlands. The resilience redevelopment project funded by the European Union involved a 15-year process of design and construction with business owners, residents, the Municipality of Rotterdam, property developers, and experts. Today, the 1.2-kilometre-long public park, which acts as a multifunctional flood defence, is a boon to business and the community. Those benefiting from the park chip in to sustain its success — local volunteers maintain and programme the park, as well as manage a neighbourhood garden, while privately owned shops below the park fund its maintenance.
THE RESILIENCE DIVIDEND AND THE VALUE OF NATURE-BASED SOLUTIONS

A city’s liveability is enhanced when co-benefits of resilience projects are enjoyed by residents. In the United States, Hunter’s Point South Park in Queens, New York City, is a multi-agency project including infrastructure, roadway improvements, and seven residential buildings of 5,000 new units, 60 percent of which are affordable for a cross section of low- to middle-income families. Notably, the waterfront park incorporates nature-based solutions—such as bioswales and marshlands—that not only serve as a natural form of stormwater absorption during flood events and storm surges, but also deliver recreational value through a public walkway that doubles as a scenic lookout.

Link mitigation and adaptation to achieve economic, social, and environmental co-benefits

In many nations, climate change mitigation measures (i.e., reducing carbon emissions) are more widely recognised, whereas adaptation strategies (i.e., preparing for climate impacts) are off to a slower start. To help streamline efforts, cities might structure initiatives to address mitigation and adaptation in tandem, allowing stakeholders to piggy-back on existing mitigation programmes to simultaneously implement adaptive measures, instead of navigating multiple programmes. Bundling resilience into a holistic many-in-one programme of sustainability, carbon mitigation, and behavioural change could realise a few synergistic outcomes together, where cost is minimised and impact amplified. (For more information on how the real estate sector and city governments can collaborate on mitigation action, see the ULI report, Decarbonizing the Built Environment: 10 Principles for Climate Mitigation Policies).

** The World Bank-backed Kenya Agricultural Carbon Project by non-profit Vi Agroforestry leverages agroforestry to mitigate emissions and enhance adaptation and ecosystem resilience. Agroforestry is a land management system that combines trees, crops, and livestock on the same plot of land. It mitigates climate change by enhancing biomass carbon storage and regulates erosion, water, and sediment flow, simultaneously reducing vulnerability to flooding and drought. The project has grown over 3 million indigenous trees in western Kenya; realising a range of co-benefits that enhance liveability, almost 30,000 farmers have improved food security during intense events, and agricultural yield increased by 150 percent over eight years. The farmers also receive payment for the carbon sequestered.

Offer training geared to climate resilience; nurture a 21st-century “green workforce”

Promoting climate resilience also means creating “green workforce” jobs for the future. Economies benefit from cultivating sunrise industries and providing vocational training for emerging jobs in sustainability and resilience. Retrofits will play a large part in preparing existing buildings for future challenges, requiring many more skilled workers.

** The EU-funded Train-to-NZEB (Net-Zero Energy Buildings) programme established a network of training centres (called Building Knowledge Hubs) in Bulgaria, Romania, Turkey, the Czech Republic, and Ukraine to enhance the skills of construction workers and designers and empower them to implement energy efficiency measures in building projects. It was followed by Fit-to-NZEB, focused on training for deep energy building retrofitting where 4 new BHELs — in Ireland, Italy, Greece and Croatia — were opened. Based in the United States, the BlueGreen Alliance brings together a coalition of labour groups and environmental organisations at the nexus of good jobs and a clean-energy economy. Its Jobs21 Blueprint lists key strategies to create jobs, leverage private investment, and attract bipartisan political support.

** In 2020, the University of California, Berkeley, Center for Labor Research and Education released an influential report on expanding employment opportunities as California transitions toward a carbon-neutral future. According to the report, the state must focus on job quality, not just quantity — and the state government and industry can jointly fund training programmes that “prepare workers for careers, rather than niche programmes that train on one particular ‘green’ skill or ‘green’ technology”. Many community colleges in the United States are already expanding their offerings for “green collar” jobs.

The insurance industry might also experience growing demand for green finance and holistic assessments on climate impacts (see Principle 10: Normalise Green Finance to Fund Projects), which would mean that economists, actuaries, and real estate valuers must be trained to take an interdisciplinary approach.
II. EMPOWER

Empowering a variety of stakeholders to join in and support one another in the work of building climate resilience through data, information, and knowledge sharing; equitable and inclusive processes; and a common narrative.

Resilient cities encourage interaction among stakeholders while building their capacity to contribute. How can different stakeholders be identified and rallied to the cause of building climate resilience? How can it be easier for organisations and individuals from the private sector, government, and civil society to participate?

The next three principles address how a city can activate and empower a much broader, and more inclusive and diverse, range of stakeholders.

PRINCIPLE 4: PROVIDE TRANSPARENCY THROUGH DATA AND KNOWLEDGE SHARING

In an enabling ecosystem, stakeholders make informed decisions based on scientific understanding, which requires access to raw data, metadata, and paradata. Relevant data sets that can be shared and analysed include climate projections and impact estimates, infrastructure plans, and socioeconomic indicators. The government is an important source and custodian of data that informs and empowers individuals, businesses, non-profit groups, and scientific consortia in climate resilience planning. Transparency also boosts accountability by allowing for checks-and-balances. At all times, data integrity — including completeness, accuracy, consistency, security, validity, and reliability — must be preserved.

Encourage data sharing to enhance risk assessment and development of climate strategies

Data is key to understanding how climate change will impact our cities, communities and lives. As more sophisticated data is increasingly available to analyze climate change trends, data owners, such as governments, the private sector, and research institutions, can do more to publicly share infrastructural and climate data for joint fact-finding. Cities can then centre their resilience policy work on climate data, and make investments in infrastructure and future housing and development decisions accordingly.

- Scientific experts with the New York City Panel on Climate Change are able to generate their own or make use of other public datasets to deliver reports that allow businesses and the city to make better risk assessments and recommendations which then power policymaking.

- The Open Data Institute supports data sharing by working with companies and governments to build an open, trustworthy data ecosystem in which people can make better decisions using data and manage any harmful impacts. Similarly, the UK’s Icebreaker One convenes private- and public-sector leaders to develop data infrastructure, unlock standards-based marketplaces, and reduce friction for data at scale. NYC Open Data is another example of an open data platform on which citywide data sets are made available to all.

Develop a programme or platform to consolidate, organise, and share high-quality data

Consolidating the best data for decision-making is a key role in resilience that can be played by organisations with the capability to host and
SHARING BUILDING OPERATIONS DATA

Sharing operational performance and building management data can help private-sector players see a more complete picture of the impact of sustainability strategies and how they can contribute to building climate resilience. It also enables benchmarking on energy and carbon use across different industries, land use and building types (e.g., commercial, retail, civic facilities, and residences), and household typologies.

In the United States, large commercial buildings have worked with the government to publicly disclose energy use for benchmarking in over 30 cities, often through the Environmental Protection Agency’s Energy Star Program. These data are useful inputs for building efficiency modeling and for making comparisons between like buildings. Similarly, the ULI Greenprint Center for Building Performance manages a coalition of real estate owners and managers dedicated to reducing carbon emissions and energy use that facilitates benchmarking and data sharing among member companies.

New York City’s Climate Mobilization Act includes Local Law 97, which mandates energy reporting for buildings larger than 25,000 square feet, and eventually requires them to post “letter grades” of their energy use intensity. Buildings owners may be motivated to improve operations to respond to consumer demand for sustainability and keep up with their peers. Under Local Law 97, by 2024, these buildings will be required to meet annual greenhouse gas limits.

Beyond building operations and maintenance, it is becoming more common to monitor carbon emissions and resource use throughout a building’s entire life cycle, from construction to demolition, a concept known as embodied carbon (See Principle 2: Work across Space, Time, and Organisations).

disseminate data for public use. In some contexts, this may be a local university, and in others a non-profit or even a city government department. A one-stop repository can be managed by a dedicated team that streamlines access to information traditionally held by multiple departments, research institutes, and public archives like Datadryad. These data managers can identify, consolidate, and clean key data sets and ensure that they are compatible for stitching and layering, while working with end-users to understand priorities for future data acquisition.

• In the United States, the San Francisco Open Data platform (DataSF), coordinated by the city’s chief data officer, standardises and streamlines data sets for specific uses to “empower the use of data in decision-making and service delivery.” In the publishing process, it helps city departments with data transformations, automation services, and handling of sensitive or protected data.

Implement safeguards to prevent data misuse and mitigate unintended effects

Data must always be protected — to address concerns over security and privacy, including breaches of personal data, misuse, and cyber espionage or terrorism. Additionally, publicising data related to climate risk assessments can shift responsibility for addressing risks onto homeowners for problems they may not have created and cannot solve on their own. For many, the family home is their largest investment; declines in home values based on exposure to climate impacts can feel devastating. Therefore, risk disclosure must be coupled with government support for resilience-building. This may include financial incentives; flood insurance; or technical assistance for retrofits through programmes like FloodHelp NV. Safeguards such as home buyouts or other assisted relocation measures may be considered as a last resort.

Sharpen data resolution for local applications and responses

The best data is up-to-date, detailed, and specific. Ideally, publicly available data on flood exposure and risks should be updated frequently and be of sufficient granularity to encourage planning and design down to regional, neighbourhood, and zip-code levels. In many locations in the United States, residents can search for their exposure to flood risks using the Federal Emergency Management Agency (FEMA) flood maps. However, updates to the maps are irregular; some localities have not seen updates in several decades. Residents in regions with outdated flood maps may not be aware of or able to respond to current flood risks.

Data on energy and resilience retrofits is a key area of interest in New York City, where buildings account for 67 percent of emissions. Complicating this is the issue of an ageing building stock, which has a median age of 53 years, and which has designs that may not be adequate to withstand and adapting to worsening climate impacts. Hence, existing buildings, not only new developments, have to improve their resilience. Because risk varies with building typology, microclimates, and location, fine-grained risk assessment data can help property owners understand, and respond to, their specific vulnerability (See Principle 2: Work across Space, Time, and Organisations).

• For example, the non-profit First Street Foundation tries to bridge this gap by quantifying and updating total flood risks for individual properties. Fine-grained data for each property is most useful, but analysing below the zip code level requires resources and expertise.

Many ways exist to share data even more widely and easily. Key data owners can make data available for climate planning by the private sector and the community.

• In Rotterdam, the Netherlands, extreme rainfall events are analysed and used to calculate flood risk using hydrodynamic models. Through the Rotterdam BlueLabel, risk labels that are easily understood (grade A to E) on individual buildings, streets, and infrastructure enhance residents’ awareness of their exposure to floods. Detailed information down to the square metre is made easy to understand through visualisation, allowing residents to take protective measures on their properties.

Information on climate events and updates can also be disseminated quickly through real-time texts and social media. For instance, Singapore shares its rain and flood risk information via Twitter, and the public can subscribe to announcements via text message. Likewise, insurance companies communicate with clients through social media and text messages, tracking storms and sharing information on the claims process.

Diversity modes of data and information sharing; make them truly accessible to laypersons

In the United States, large commercial buildings have worked with the government to publicly disclose energy use for benchmarking in over 30 cities, often through the Environmental Protection Agency’s Energy Star Program. These data are useful inputs for building efficiency modeling and for making comparisons between like buildings. Similarly, the ULI Greenprint Center for Building Performance manages a coalition of real estate owners and managers dedicated to reducing carbon emissions and energy use that facilitates benchmarking and data sharing among member companies.

New York City’s Climate Mobilization Act includes Local Law 97, which mandates energy reporting for buildings larger than 25,000 square feet, and eventually requires them to post “letter grades” of their energy use intensity. Buildings owners may be motivated to improve operations to respond to consumer demand for sustainability and keep up with their peers. Under Local Law 97, by 2024, these buildings will be required to meet annual greenhouse gas limits.

Beyond building operations and maintenance, it is becoming more common to monitor carbon emissions and resource use throughout a building’s entire life cycle, from construction to demolition, a concept known as embodied carbon (See Principle 2: Work across Space, Time, and Organisations).
Climate change will have the greatest impact on low-income and historically marginalised communities, who have the fewest financial resources to respond to and recover from disruptive events. Governments, planners, investors and businesses must recognise this disparate impact, and understand that different segments of society have varying vulnerabilities and capacities to respond. For example, heat waves and seasonal flooding usually have disproportionate impacts on minority communities, as a result of historically discriminatory land use and lending and investment policies. The COVID-19 pandemic has reinforced the need to consider equity as disadvantaged communities are often hardest hit and may lack the resources to recover.

When solutions are being scoped, residents of all backgrounds should be given the opportunity to meaningfully voice their needs, hopes, and aspirations. Only then can resilience plans respond to their interests, not only the priorities of the most powerful or best connected. Diverse communities should be provided the tools and information needed to help drive the resilience-building process.

The public engagement for Calgary’s West Eau Claire Park involved a variety of stakeholders — residents, park users, adjacent property owners and businesses — through diverse engagement methods including open houses and workshops, online surveys and map tools, and on-site interviews and sounding boards. Photo courtesy of Klausen Photography.

Social Inclusion is Critical for Resilience

Ensuring that all members of society are provided for and can benefit from protective measures is a key goal of government, yet in many cities, affluent citizens have more resources to amplify their voices. A traditional cost-benefit approach is to locate resilience solutions where property values are highest, which can prioritise wealthy and “economically productive” areas over less affluent neighbourhoods. This further disadvantages vulnerable, less well-resourced populations whose circumstances make them more predisposed to adverse impacts.

Vulnerable segments of society are affected by climate change in various ways. Elderly residents may be more susceptible to heat stress, while lower-income households tend to live in hotter neighbourhoods and sometimes have limited access to air conditioning or cooler public green spaces. Planners should also recognise and alleviate detrimental impacts such as displacement and gentrification that can arise as unintended consequences of adaptation strategies. Tools could include equitable housing strategies and alternative financing approaches, such as community land banks, that can be incorporated into climate adaptation plans.

Inclusion is about increasing everyone’s ability to make choices. The lens of equity is crucial in adjusting the priorities of adaptation to ensure that all city residents can enjoy a resilient future. Additionally, some communities deemed vulnerable may also have creative methods of adapting to adverse conditions which everyone can learn from. Resilience strategies should ensure both distributive justice — in which communities, especially the marginalised, are fairly allocated the material benefits of resilience — and procedural justice, in which marginalised communities are included in political processes to correct historical exclusion and ensure representation.

Empower diverse groups to join in decision-making: co-develop solutions

The best solutions are developed together with those most affected. For example, when local governments or planning organisations conduct community engagement, they should serve as facilitators working with community members to understand and help articulate the community’s needs rather than imposing outside perspectives of what is needed. This enables creating ground-up solutions that meet specific local needs, as opposed to nudging the community to agree to prescriptive actions. As Amy Chester of Rebuild by Design has observed: “The city is the expert in governing, but the community is the expert in living in that neighbourhood.” It is important to note that issues that communities bring to the table may not always focus on mitigating physical risk, but rather on the underlying inequities that create vulnerability.

Scale It Up: Bridgeport involved a youth design workshop (above) at which students reimagined future scenarios for the Pequot River in Bridgeport, Connecticut. The workshop began with a bicycle tour of the River (below) to highlight opportunities for redesign. Photo courtesy of Rebuild by Design.
Provide fairer access to information, tools, resources

Knowledge experts and resource owners can make information and other tools more accessible to those who lack adequate resources or understanding of the issues.

For example, New York City’s Retrofit Accelerator provides free, one-on-one advice and services to enable building owners to develop energy-efficient solutions tailored to their particular needs and capabilities. To further encourage access to these resources, materials should be translated into relevant languages spoken locally, or communicated by advocates fluent in those languages, in order to share such information with their communities.

Better access to tools and resources can foster community-driven projects that benefit society more broadly.

The National Fire Prevention Association (NFPA) in the United States runs a National Firewise Communities Program USA that encourages households to reduce their wildfire risk with the help of toolkits. It also supports residents working together to adapt their neighbourhoods and strengthen emergency response skills with firefighters and paramedics. NFPA has differentiated outreach strategies that vary across age groups, from Sparky the Fire Dog for children to Wildfire Risk Reduction Community Service Projects for teenagers.

Some insurers have been proactive in sharing climate-risk-related information and resources.

In its request for proposals for vacant land in East Harlem, the New York City Department of Housing Preservation & Development required a community organisation to be co-owner and co-developer. Sendero Verde, the 100 percent affordable housing project that resulted, includes developers L+M Development Partners, Jonathan Rose Companies, and the community organisation Acacia Network.

Amplify voices that can communicate the community’s assets, aspirations, and challenges

Inclusion is best achieved when all communities have effective voices in decision-making processes. In addition to direct public outreach, stakeholders can also identify and partner with organisations and individuals in the community and position them in roles with meaningful influence. For example, real estate developers can designate a community partner or local champion for a development project, with these roles extending beyond the consultation process.

In its request for proposals for vacant land in East Harlem, the New York City Department of Housing Preservation & Development required a community organisation to be co-owner and co-developer. Sendero Verde, the 100 percent affordable housing project that resulted, includes developers L+M Development Partners, Jonathan Rose Companies, and the community organisation Acacia Network.

In Thailand, the Bangkok Homeless Network designed and built its own homeless shelter in the Talung Chan District, with support from the Rain Markskong Program, Community Organizations Development Institute (CODI), and others. This project represents a new co-production strategy to address homelessness in which the government provides the land and finances the construction, while people experiencing homelessness design and run the shelter according to their needs. Similar co-production approaches can be adopted in developing climate solutions and encouraging community ownership in building resilience.

Conduct equity analyses for just allocations of funds and investment

Resources for climate adaptation should be distributed carefully and fairly to support households and communities which stand to lose the most from climate change. Disparities may emerge among where funds are available, where there is inherent physical risk, and where there is low capacity to respond. Besides targeting aid based on geography and economic value, stakeholders should find strategies to apportion resources according to the financial, social, organisational, and physical capacities of recipients.

In the United States, the city of Pittsburgh, Pennsylvania, investigates structural and systemic factors in allocating resources to reduce inequality. Its Equity Indicators are a set of 80 measures that report disparities by race, gender, and income in four domains: 1) health, food, and safety; 2) education, workforce development, and entrepreneurship; 3) housing, transportation, infrastructure, and environment; and 4) civic engagement and communications. Similar indicators could be incorporated into city resilience planning.

Besides targeting aid based on geography and economic value, stakeholders should find strategies to apportion resources according to the financial, social, organisational, and physical capacities of recipients.

Reduce structural disadvantages for some businesses; broaden access to opportunities for all

The impacts of climate change and the capacity to respond are not the same across all businesses. Some types of businesses may find it inherently costlier to adapt, while others may not have access to capital or know-how. Resources that are welcome include guidebooks and toolkits; lists of affordable building improvement measures; and even grants, low-interest rate loans, or technical assistance.

As an example of how these barriers can be overcome, the Floodwater Management Grant Assistance Program under San Francisco Public Utilities Commission’s RainReadySF initiative provides grants to eligible homeowners, small businesses, and non-profit organisations and includes full coverage for those facing financial hardship.

The private sector can also contribute to levelling the playing field.

Mesa, a plug-and-play building automation product developed by Sidewalk Labs, provides commercial building owners and facility managers energy automation. This affordable innovation enables improved environmental performance especially for smaller, resource-constrained building owners.
People collaborate better when they are inspired by shared stories. A persuasive and inclusive climate resilience narrative drives consensus, garners public support, and motivates broad participation. In an ideal ecosystem, stakeholders not only share scientific data and project decisions, but also affirm common values and ideals. A positive vision developed among government, industry, and the public (see Section 1: Envision) can motivate “whole-of-society” action by not only focusing on the risks of climate change, but also highlighting the big picture benefits of resilience, alongside local community wins. Through platforms for knowledge exchange and communication, the public has ample opportunity to be educated about the urgency of climate challenges and the array of potential solutions, as well as how they can protect their lives and properties and even contribute to the city’s efforts.

Craft the climate narrative with adequate input from experts, the private sector, and citizens

To be effective, a city or nation’s climate narrative offers a vision rooted in science, that is reinforced by the interests of — and inputs from — city residents and the business community.

- In South Korea, citizen committees aided by expert advisers formulated a vision and decided key issues and strategies for the long-range 2030 Seoul Plan on spatial development. This was supported by institutionalised participatory planning processes and regulatory frameworks. In Cambodia, the Ministry of Environment’s Climate Change Department worked with organisations such as Oxfam and the United Nations Development Programme to conduct the country’s first climate change public survey across all demographics to inform its climate change policy and planning.

Align business plans and community projects with the city’s or organisation’s climate narrative

All corporate and civic initiatives should be consistent with overall goals.

- In Denmark, to realise Copenhagen’s climate goals (to become the world’s first carbon-neutral capital city by 2025), the city government, led by the mayor, engaged more than 200 private-sector and community stakeholders to develop 22 specific business plans and 65 separate projects. A road map outlines key city initiatives to inform stakeholders about plans for analysis, testing, and implementation.

Highlight the urgent need to be proactive, not reactive: start with the physical reality of risks

Typically, people respond readily to calls for action only when they can clearly see how they would be personally affected.

- In Florida in the United States, Mexico Beach’s Sand Palace, built to weather disasters, withstood most of Hurricane Michael’s impacts in 2018, whereas three-quarters of the houses in the same region were lost to the storm. The standing palace illustrates risk and reminds residents of the need to go beyond complying with mandated standards and FEMA maps.

At the organisational level, companies can ensure that all business units are aligned with their own climate resilience narrative.

- In striving towards a company-wide net-zero emission target by 2050, the Walt Disney Company is exercising carbon footprint accounting across its operations through the use of a “shadow” (or internal) carbon price. The entertainment conglomerate’s theme parks and resorts must develop plans to account for, and ultimately reduce, energy and water consumption and waste generation. Disney’s climate vision trickles down to its staff, with alternative commute options and incentives offered through its Commuter Assistance Program to reduce emissions.
Florida suffered extensive damage from Hurricane Andrew in 1992, partly due to building codes that were inadequate for stronger storms or not evenly enforced. Although the codes were subsequently updated, they only apply to new developments; mandated standards for retrofitting existing buildings are still lacking. Across the state, 60 percent of homeowners may be without flood insurance, despite exposure to storms and rising sea levels. Stronger narratives around the need for flood insurance and retrofit initiatives may help spur greater action to proactively address these gaps before another major hurricane strikes.

In Singapore, climate change used to be a relatively abstract, distant issue, given the absence of cataclysmic climate events. Traditionally seen as a concern only of scientists and policymakers, climate change was contextualised for all residents when Prime Minister Lee Hsien Loong illustrated flood risks and the potential extent of inundation with a map during a major speech, the 2019 National Day Rally. Because residential areas are clearly at risk, there is growing awareness that climate change will affect people’s daily lives.

Communicate benefits of programmes and solutions to capture public interest

One way to foster wider interest in climate adaptation or mitigation is to centre the conversation on co-benefits, especially those that people care about.

Vary communication tools and channels to increase outreach and awareness

In today’s segmented media landscape, many outreach channels can, and must, be used.

With an appropriate vision and an array of empowered stakeholders coming together to build climate resilience, what are the systems and processes that should be developed to support climate action? The next four principles illustrate approaches to incubate ideas, formulate programmes, and effectively implement solutions.

PRINCIPLE 7: NURTURE A CULTURE OF COLLABORATION

To achieve collective goals, stakeholders must break out of their silos and step out of their conventional work scopes to collaborate and contribute to resilient outcomes for the city as a whole. This involves seeking integrated solutions and engaging with others to share knowledge, expertise, and resources, and co-develop best practices. To do this, they need the support of strong mechanisms that promote collaboration.
EXPLORE DIFFERENT MODELS OF COLLABORATION

The ways people collaborate may need a reset. Traditional governance may not work as efficiently in times of crisis and recovery, and may also be slow to deliver resilience at the community scale. Complementing hierarchical models of top-down national governance with more flexible, networked, multi-stakeholder models of local and metropolitan governance, can bring together a broader set of stakeholders who are empowered to develop targeted solutions.

As earlier mentioned, the Southeast Florida Regional Climate Change Compact (made up of Broward, Miami-Dade, Monroe, and Palm Beach counties) is one of the most innovative regional climate collaborations in the United States, and has inspired compacts in other regions. The four counties jointly agree on data sources and projections for climate vulnerabilities such as sea-level rise and share knowledge on resilience-building. This networked governance model promotes collaboration and reaps benefits from economies of scale by sharing common data sets and costs.

Besides regional collaboration, collaborative governance models such as business improvement districts (BIDs) or community benefit districts could also be vehicles to tackle climate challenges. These public-private partnerships thrive on direct involvement of the private sector and the community to address streetscapes and the public realm. BIDs, sanctioned and sometimes funded by the city but operated independently by the private sector, represent the interests of businesses and stakeholders in a local area and offer a unique local ecosystem driven by self-funded mechanisms and active participants. Although resilience has not been a historic focus for BIDs, some BIDs are beginning to incorporate climate resilience within their mandate to improve the public realm. For example, the National Landing BID in Arlington, Virginia — the future host of Amazon’s second headquarters in the United States — has integrated resilience as a key strategy within its vision to build neighborhood livability and equity, including green infrastructure, stormwater management, and urban heat island mitigation as part of public realm improvements. An additional example is Sunset Park Green Resilient Improvement District (GRID), kick-started by community organisation UPROSE. GRID comprises small businesses that work together to ensure sustainable revitalisation and resilience, especially along the waterfront.

Break organisational silos to tackle cross-cutting challenges

Silos are hard to break, but cross-cutting climate challenges can be tackled better by assembling an interdisciplinary team. Decisions and solutions developed by the team can be effectively implemented when supported by the organisation’s leadership as it encourages greater intra-organisational collaboration.

For instance, the U.S. Army Corps of Engineers brought in landscape designers to work with its engineers through the Engineering With Nature (EWN) initiative. The interdisciplinary teams were able to devise new ideas that would never have been raised in a traditional engineering process. For example, the strategic mounding of material to create Horseshoe Bend Island in Louisiana intentionally aligned natural processes in the river with engineering processes. This created new wetlands for natural habitats, recreation, and sequestered carbon, while reducing the need for ongoing dredging, resulting in more than $12 million in savings over a three-year period.11 The conventional approach would have required additional equipment and land rights to transport dredged material over long distances.12

Alternatively, seconding officers to other business units or organisations increases their exposure and contribution to new priorities and approaches.

To develop plans for Singapore’s Active, Beautiful, and Clean (ABC) Waters Programme, a landscape architect from the National Parks Board was seconded to the Public Utilities Board, which is mostly staffed by engineers. This exchange of knowledge led to projects such as the redevelopment of Bishan-Ang Mo Kio Park,13 which now has superior flood control with the naturalisation of the concrete river channel that flows through and the use of innovative techniques such as soil bioengineering.

Beyond projects, stakeholders can continue to share cross-sectoral expertise in informal “communities of practice” within a company and with external collaborators. Internationally, organisations such as the Urban Land Institute can drive collective efforts by convening global professionals for knowledge exchange and advisory services.
Allocate time and funds for public engagement, education, and co-creation of local ideas

Community engagement is crucial for fostering collaboration.

- In several projects in New Jersey and New York — such as the Brooklyn Bridge–Montgomery Coastal Resilience Project, the South Battery Park City Resiliency Project, Rebuild by Design Meadowlands, and Rebuild by Design Hudson River Project — local governments carved out community engagement stages in their timelines, and the engineering firm AECOM’s designers developed toolkits, models, and presentations to interact with the public to educate it about different types of solutions and find out preferences. Town halls and neighbourhood-specific meetings allowed the people to inform designs that addressed their needs and enhanced the public realm, while providing critical flood protection.

- In Paris, Budget Participatif is a participatory budget programme in which 5 percent (about €0.5 billion) of the city’s capital budget can be used for citizen-led, ground-up initiatives.

Citizens propose and vote for ideas on an online platform that facilitates exchange between the government’s technical departments and the public. The “fight against all pollution” project was awarded €3 million in 2019, raising awareness regarding air and noise pollution, as well as enabling stronger citizen participation in data collection and experiments with sensors in public spaces.

- In the Netherlands, Amsterdam’s Rainproof platform facilitates sharing of information, ideas, and initiatives on water management by residents, civil servants, professionals, and entrepreneurs. It then connects the relevant public- and private-sector experts with interested citizens so they can co-develop water solutions that contribute to a common goal of a “rain-proof city” through smart solutions that make the best use of increasingly heavy rainfall.

Formalise multi-stakeholder, multi-level processes

Committees with representatives from the public, government, the private sector, and academia can help gather inputs and set strategic directions for a city’s climate resilience plan.

- In the United States, the Boston Green Ribbon Commission, co-chaired by the mayor and an influential trustee of a community foundation, consists of business and civic leaders who advise on the city’s Climate Action Plan. They make up cross-cutting working groups that deliver reports and design projects that respond to the needs of the city and suggest new projects using a data-driven, action-oriented approach.

- An innovative way to institutionalise multi-level processes is the Netherlands’ national-level Delta Programme. This sets out climate change and water-related plans by engaging research institutes, industry, and civic organisations in joint fact finding and solutioning, a process known as the Dutch Diamond approach. Its annual average budget of €1.3 billion (2019–2023), called the Delta Fund, incentivises localities to propose projects aligned with the programme. Multi-level, multi-stakeholder collaboration is evident in the plans for the Friese IJsselmeer shores. Localities such as the province of Fryslân and municipalities of Súdwest-Fryslân and De Fryske Marren work with the central government and civic organisations like the Netherlands Society for the Protection of Birds. The government set aside €12 million from the Delta Fund, while local groups co-invested €4.9 million, to develop measures for shore protection.

Partner with local stakeholders to develop place-based projects

Partnering with local stakeholders is always more effective because of their extensive, detailed knowledge of place. Both industry and government can support place-based projects and master plans that deliberately integrate proposals from local community organisations.

- In the United States, the Gowanus Canal Conservancy — a community-based environmental steward for the Gowanus Canal in Brooklyn, New York — initiated its own master plan process, “The Gowanus Lowlands Master Plan” that re-creates a network of parks and open spaces that retains the area’s historic character while improving neighbourhood and ecological health (bottom right). Photo courtesy of SCAPE and Gowanus Canal Conservancy.

- The Amsterdam Rainproof projects that have been undertaken through the programme, such as the Smart Rain Barrel by Studio Bas Sala at Ouderkerk (right top) and community growing along streets (left). Photo courtesy of AECOM.
agency representatives from the city, including representatives from the Department of City Planning and the New York City Department of Environmental Protection. Local stakeholders can also contribute to design toolkits.

The Waterfront Alliance, another New York City-based non-profit organization, developed a set of benchmarks called the Waterfront Edge Design Guidelines (WEDG) to evaluate resilience for waterfront park projects. The organization supports engineers, designers, developers, and community members to apply WEDG in a local context. Using these guidelines, cities can improve their land use policies to be more resilient. For example, the city of Camden, New Jersey, worked with the Waterfront Alliance and Cooper’s Ferry Partnership to better understand how WEDG could be used to inform new waterfront developments as well as the city’s sustainability ordinance. It then produced a local guide of appropriate strategies for building at the water’s edge using WEDG, for use by design and engineering professionals.

Work with universities to innovate, scale up new ideas

Universities are rich with ideas and have many willing hands to test them. Cities, companies, and universities can develop a resilience research agenda that includes science and application of solutions.

Singaporean real estate developer CDL works with universities to run experiments and scale up useful ideas on their properties. The company collaborated with the Solar Energy Research Institute of Singapore at the National University of Singapore to use building-integrated photovoltaic technology with prefabricated pre-volumetric construction technology in a residential development. In Iceland, the government consulted with the University of Iceland on the United Nations Sustainable Development Goals (SDGs) when creating its 2030 Agenda for Sustainable Development; it also established an Icelandic Youth Council for the SDGs to allow young people to voice concerns to policymakers.

To build climate resilience, every level of decision-making should stay flexible. It is an ongoing process of adaptation, not a one-time megaproject. Stakeholders should think about the well-being of generations to come; they should address climate change with a long-term mind-set, adopting a variety of multi-functional, adaptable solutions. Incremental implementation in phases prevents “analysis paralysis” or giving up prematurely in the face of the enormness of the challenges.

Stakeholders should strive for flexibility, seeking customised solutions in which buildings and localities are approached differently — considering critical versus regular assets; sheltered versus exposed locations; new build versus redevelopment; and diverse housing and commercial typologies.

Cooper’s Point in Camden, New Jersey, is a project that brought WEDG principles of resilience, ecology, and access to Camden’s waterfront. Photo courtesy of Cooper’s Ferry Partnership.

Integrated solutions, such as rainwater squares, are only possible if planning guidelines and governance structures are flexible and updated to permit their development, and residents are educated to use them safely. Photo courtesy of Rotterdam Office of Climate Adaptation.

Cooper’s Point in Camden, New Jersey, is a project that brought WEDG principles of resilience, ecology, and access to Camden’s waterfront. Photo courtesy of Cooper’s Ferry Partnership.

Integrated solutions, such as rainwater squares, are only possible if planning guidelines and governance structures are flexible and updated to permit their development, and residents are educated to use them safely. Photo courtesy of Rotterdam Office of Climate Adaptation.
ACTION STEPS

Adopt climate solutions in phases to make progress

Development projects can be implemented in stages to improve their effectiveness.

- Commissioned by New York City and developed by SWA/Balsley, Weiss/Manfredi, and Arup, the Hunter’s Point South Park was a two-phased, multi-stakeholder effort. Planning for the project began more than 20 years ago with phase one completed in 2013 and phase two in 2018. The incremental process aimed to test the park’s innovative catch-and-release approach, in which rainwater is evacuated at different speeds through a planned run-off system. As phase one neared completion in 2012, Hurricane Sandy inundated the area with four-foot storm surges. The project’s resilient design allowed water to drain from the area at a pace the sewer system could handle, leaving the park intact.

- The phased implementation also presented an opportunity to gain consensus from community members, who could interact with a real-life project, and allowed the development team to see how the native ecosystems were experienced on site. The details they gleaned on materials and vegetation as well as user behaviour could inform the second phase and ultimately improve the quality of life for all. In adopting iterative processes, businesses can benefit from developing and refining frameworks to guide projects towards their goals.

Aside from specific development projects, land use stakeholders can collaborate to implement mandates in phases, allowing a period for adjustment and reducing long-term costs. This occurred in Miami when building codes underwent a progressive revamp to ensure that structures could withstand higher wind speeds after Hurricane Andrew. Through workshops with architects, engineers, builders, and real estate developers, a new building code was tested and implemented over five years so that relevant stakeholders had time to plan and adapt. The building code continues to be improved and has succeeded in reducing damages in recent disasters such as Hurricane Michael in 2018.

Private stakeholders such as developers, engineers, and building owners can also play an active role in government pilots in such ways as providing specialised design expertise or sharing building-level insights.

- In Monroe County, Florida, road elevation pilot projects in six of the most vulnerable neighbourhoods will be selected. The projects commissioned private engineers to analyse vulnerabilities through climate science modelling and to test innovative drainage solutions based on transparent design criteria. The pilots will then inform long-term road infrastructure adaptation for statewide application.

Government buildings can be a good place to initiate demonstration projects because they are not focused on immediate return on investment and can be more comfortable justifying innovation for public benefit.

- In Singapore, the Public Sector Taking the Lead in Environmental Sustainability (PSTLES) programme pushes government office buildings to achieve higher targets in energy, water, and waste than a typical commercial building and show the feasibility of stretch targets. In the United States, the “Sustainability Base” in the NASA Ames Research Center demonstrates the possibilities of state-of-the-art energy-saving designs in a working office building.
Use holistic performance-based guiding frameworks, instead of solely relying on fixed standards

Many building codes focus on energy consumption, but could be refined to include resilience measures and their benefits. Buildings and infrastructure benefit from both prescriptive standards and more flexible risk-informed, performance-based guidelines that incorporate provisions on sustainability and resilience. Performance-based approaches to regulations, codes, and tender requirements can give building owners and developers the flexibility to innovate and adapt over time.

The International Code Council develops the International Codes, a set of holistic building codes based on prescriptive and performance-related requirements to ensure safe, sustainable, affordable, and resilient structures. It also lists various potential energy-resilience provisions that building codes could incorporate. These codes can be adopted by jurisdictions, and anyone can participate in the code development process, which is renewed every three years.

Incorporate flexibility into land use and building functions

Buildings are a major part of the larger resilience ecosystem and thus must adapt over time according to climate risks and market demands. Developers should build greater flexibility into their assets to enable repositioning as climate risks evolve. In tandem, governments can allow more flexible zoning in land use to permit change of uses within buildings.

In Singapore, “white sites” are parcels where a range of uses are permitted, giving developers flexibility to decide on the mix of uses, as long as they meet stated conditions. During the lease period, developers can respond to a changing market by updating the mix of uses. This makes projects more flexible and resilient in the long run.

<table>
<thead>
<tr>
<th>Pre-disaster/mitigation</th>
<th>Disaster/life safety</th>
<th>Post-disaster/recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social resilience: reduce energy burden to free up financial resources for other household needs or adaptation steps</td>
<td>Impacts from hazards: encourage energy-efficient installations that enhance structural stability</td>
<td>Passive survivability: design for energy-efficient installation like glazing and daylighting that keep buildings occupiable even if grid power is shut down</td>
</tr>
<tr>
<td>Community health: reduce air pollution-causing energy generation to lower vulnerabilities and reduce need for healthcare resources post-disaster</td>
<td>Extreme temperatures: require efficient heating or cooling systems to reduce grid strain</td>
<td>Rot, mould, and mildew: control heat, air, and moisture to enhance building durability</td>
</tr>
<tr>
<td>Urban heat island: encourage use of reflective roofing materials to reduce severity of extreme heat and reduce energy use for cooling</td>
<td>On-site power generation: ensure the continued operation of critical energy facilities and encourage use of renewable energy</td>
<td>Rainwater harvesting system. This could include as extensive roofscape, community gardens, solar panels, and a rainwater harvesting system.</td>
</tr>
</tbody>
</table>
Lower financial barriers to encourage innovation and increase participation

Governments, economic blocs, and multilateral banks can catalyse businesses to innovate by offering grants and loans where barriers to participation are high.

- For instance, the EU rolled out the €10 billion Innovation Fund in 2019 to support businesses in their development of low-carbon technologies, such as carbon capture and geological storage (CCS), which has great potential for climate mitigation but high costs for research and development. The fund will support up to 60 percent of the additional capital and operational costs linked to innovation and is flexibly disbursed according to market conditions, project needs, and milestones achieved during the project’s lifetime. Private investment can be mobilised to fill in funding gaps.

Besides drawing on external sources of funding, the private sector can band together and pool resources to co-develop innovative solutions.

- What Design Can Do, an international platform of design experts and investors, holds global design challenges for fresh solutions that address the world’s pressing issues. In 2017, its Climate Action Challenge encouraged bold ideas that combat the impacts of climate change. Winning projects underwent a six-phase process in which the idea, with support from a shared award package of €900,000, was translated into a prototype, product, then business case via networks of partners such as the IKEA Foundation and Autodesk Foundation.

Design mechanisms, policies, and incentives aligned with business goals

Given businesses’ typical focus on corporate goals, government-led mechanisms, policies, and incentives that align with a commercial mind-set are more likely to bring the private sector on board.

- In Europe, Energiesprong is a retrofit approach that refurbishes homes to net-zero-energy properties based on innovative new-build standards and funding. The retrofits are financed by future energy cost savings and the budget for planned maintenance and repairs over 30 years. This mechanism allows residents to maintain their cost of living while construction companies benefit from redirected funds. Amendments to the legislation (e.g., to allow the conversion of monthly energy bills to service fees for housing associations) are carried out in collaboration with independent market development teams, policymakers, and banks in order to create and scale viable financing pathways.

- Countries like South Korea and U.S. states like California have implemented carbon cap-and-trade schemes that allocate emissions permits to businesses. If businesses exceed their limits, they must buy additional allowances. Other jurisdictions, like Singapore, have pursued a carbon tax. These market-based systems drive demand for more sustainable buildings and operations while revenues from the scheme can be reinvested in green growth initiatives and other resilience measures.

Identifying and removing institutional barriers can also lead to a more enabling environment for businesses that wish to pursue resilience. To level the playing field between developers, resilience could be factored into tender prices for land, either as a penalty for projects without resilience measures or as a bonus for firms that include them. It could also be included in design criteria in a two-envelope bid (where design and price are separately evaluated). The bid process could be structured to include longer lead times to encourage resilient designs and avoid penalising companies that devote resources to this effort.

As new climate-relevant needs emerge, land tenders will evolve. Bidders — especially those who are less competitive due to resource limits — could benefit from more flexible timelines and greater clarity of requirements for resilience during the design and planning phases.

Non-monetary incentives for resilient design can also manifest as building density bonuses, expedited approval processes (time savings), and recognition and awards (reputational benefits) that translate into bottom-line benefits.

Mainstream resilience into development projects through competitions, partnerships

Design competitions run by partnerships among government, NGOs, and the private sector are another useful tool for spurring new, innovative thinking for resilience.

- C40’s “Reinventing Cities” programme is a competition that seeks carbon-neutral and resilient urban regeneration projects from multi-disciplinary teams. Under this programme, Singapore’s Bukit Timah Fire Station, a heritage site, will be identified and redeveloped in accordance with C40’s low-carbon and resilient planning parameters. In the United States, after Hurricane Sandy, the Rebuild by Design competition fostered innovation for rebuilding proposals and also encouraged cross-sector collaboration and extensive community engagement in identifying design solutions. Later, the federal government adapted this model on a national scale with the National Disaster Resilience Competition, led by the U.S. Department of Housing and Urban Development.

Public-private partnerships (PPPs) can also stimulate private investment for resilient projects.

- Sendai Airport is Japan’s first state-owned airport built, and currently operated, by Sendai International Airport Co. Ltd. (a consortium led by Tokyo Group). Central to its development was the need to future-proof against earthquakes, floods, and tsunamis following the 2011 Sendai earthquake disaster. In addition to aligning with updated and localised seismic design guidelines, the project built the adjacent Sendai Bay dykes, an inland barrier of manmade hills and raised roadways to further defend the airport.

To maximise PPP potential, the World Bank Group, International Finance Corporation, and PPIAF recommended using the whole asset/lifespan approach to assess structures for sharing risk, cost, and profits. This holds parties accountable for the infrastructure’s long-term resilience.

Component suppliers and solution integrators who want to enter the net zero-energy market can visit the Flat van de Toekomst in Utrecht, Netherlands, to learn best practices. Photo courtesy of Ilse Wolf Fotografie and Energiesprong International.
More can be done to make green finance an industry norm. Recognising both social and financial costs of inaction, dedicated funds and resources can be mobilised to scale up resilience measures. Funding sources that capture and share value — such as property assessments, sustainability-linked loans, green bonds, and revolving loan funds — must be safeguarded from greenwashing. They make up a carefully designed green finance system that factors resilience into investor returns, thereby reinforcing environmentally sensitive choices and spurring other climate strategies. In the long run, projects that are truly green and contribute to resilience become part of the new normal of climate resilience.

Refinanced by Hong Kong’s first green loan, K11 ATELIER King’s Road by New World Development is a mixed-use office complex that has since utilised HK$2.5 billion of the loan with discounted interest rates. It sports over 70 sustainability features such as a facade-integrated solar energy generation system, which are complemented by outreach to tenants on sustainability practices. Photo courtesy of New World Development.

Action Steps

Nudge investors, businesses towards green finance through market levers and mechanisms

The government and the financial sector can work together to develop more favourable conditions for the growth of green finance, including setting preferential interest rates for genuinely sustainable projects. These conditions signal that building sustainably lowers long-term risk and should allow access to better rates.

- For instance, Dutch banking corporation ING Groep lowers interest rates for green projects and raises rates for projects that do not adhere to green principles. Other stakeholders, such as a company’s investment committee, can create an internal business environment that favours green finance by scoring green projects higher in investment rubrics.

- More important, risk-adjusted returns need to be reflected in investments, primary loans, and financial activities. In the Netherlands, banks can increase mortgage interest rates for flood-vulnerable developments that have yet to be retrofitted, compelling adherence to resilience best practices. A green mandate led by forward-looking investors, shareholders, and consumers presents a strong business case for banks to reflect climate risks accurately. North America and Europe are already driving investors’ interests towards sustainability and resilience. Subsequent interest rate signals could bring along the rest of the market.

Large, influential, or government-linked institutional investors can lead their peers to build green investment portfolios and enhance environmental, social, and governance (ESG) transparency in investment decisions. Investors can establish “green pockets” (i.e., budgets that are used to fund only green projects) to shift significant equity allocations to green funds, companies, and low-carbon indices.

- For example, the Scottish government developed a £3 billion Green Investment Portfolio for large-scale projects that aim to reduce emissions. Over a three-year period, it seeks to match investable public and private projects with adequate capital flow through pitches, for which 85 percent of funding will come from the private sector.

To identify a pipeline of viable projects that mobilise multiple types of funding, cities can use technical assistance programmes such as the City Resilience Program by the World Bank and the Global Facility for Disaster Reduction. The availability of such programmes calls on the private sector to respond with bankable projects that have clear green benefits.

Companies may also consider creating a green revolving fund (GRF) to finance internal resilience improvements. Cost savings from sustainability-related projects are used to replenish the funds for the next round of green investment, thereby establishing a sustainable funding cycle, in which operating costs and environmental impacts are reduced.

- In the United States, the University of Vermont’s Energy Revolving Fund was seeded with US$13 million from the university’s cash reserve fund. Cash reserve funds are available for energy efficiency projects, but projects must pay back 5 percent interest on outstanding loans annually, in addition to principal repayments, to qualify. The funds must be repaid within seven years of project completion.

Participate in industry climate reporting and carbon disclosure initiatives

Disclosure is another important element of sustainable green finance because it enables review of environmental performance and benchmarking against other firms. Businesses, as well as government activities, may eventually shift from voluntary to mandatory reporting on physical climate risks based on common standards. In a January 2020 open letter to CEOs, U.S. investment management corporation Blackrock called for a common standard in ESG-related disclosures, endorsing industry-specific standards developed by the Sustainability Accounting Standards Board (SASB) and the climate-specific framework developed by the Task Force on Climate-related Financial Disclosures (TCFD). ESG reporting framework GRESB has also recently
adopted a Resilience Module. The financial sector should build on the critical mass of these influential drivers. Central banks and asset owners can play a bigger role in the move towards sustainable investing and disclosure for projects and portfolios.

- Japan’s Government Pension Investment Fund (GPIF), the world’s largest pension fund, has made a public commitment to require all asset managers to include ESG factors in their investment analyses and decision making. GPIF has also conducted a TCFD analysis of its investment portfolio.

Community demand is a possible accelerator for open reporting on ESG and resilience, as seen in climate mitigation.

- With commuters calling for reporting on New York City’s transit emissions, the STV Group uses the CDP disclosure system to measure and report environmental impacts. Governments, financial institutions, and civic organisations can leverage their networks to incentivize private sector reporting for a company as a whole and for asset-level resilience plans.

Establish standardised parameters and green bond ratings

As green markets continue to grow, moves towards standardisation can help unite the rest of the industry. For example, globally consistent “green bond” policies — definitions, assessment criteria, and parameters — can be co-created by the government and financial sector.

- The EU Taxonomy is a unified classification system that assesses the extent of sustainability in economic activities. It considers life cycle impacts, examining not only the primary and secondary impacts of the activity, but also the upstream enabling activity, domino/spillover effects, and downstream impacts on industries and people. The EU Taxonomy will be gradually integrated into EU legislation, which could help institutions set accurate performance thresholds in alignment with others. Likewise, the EU Green Bond Standard lays the ground rules for green bonds and aligns adopters with market best practices. These EU tools are currently being expanded and improved upon in partnership with various stakeholders as part of the EU’s financial plan for sustainable growth.

To enhance commitment while minimising greenwashing, it is important to set strict interest rate-linked criteria in the loan covenant (penalties are incurred when criteria are not met) and to evaluate performances according to definite monitoring parameters and targets.

- The Loan Market Association, Asia Pacific Loan Market Association, and Loan Syndications & Trading Association published the Guidance on Green Loan Principles to reduce greenwashing in the four components of a green loan: use of proceeds; process for project evaluation and selection; proceeds management; and reporting. While not many international standards have been enforced, businesses could proactively tap such resources when structuring their green products.

Implementing effective standards would require a joint effort between the public and private sectors.

- As part of the Hong Kong Monetary Authority (HKMA) studies to develop its own green finance policies, a list of sustainable banking and green finance-related considerations from local and foreign banks is being assembled. To date, the HKMA has introduced three key measures to support and promote green finance in Hong Kong, as well as a self-assessment tool for institutions to evaluate their readiness.

The process of nurturing a resilience ecosystem must first include and appreciate the values and considerations of all key stakeholders, which can be quite diverse, or even divergent. Building up the ecosystem would entail breaking silos — thinking and working across time and space and beyond single organisations. It would mean applying resilience approaches at the neighbourhood, district, and city levels and beyond so as to maximise the many options to enhance the city’s liveability. Along the way, data and knowledge, as well as resources and incentives, should be made available openly and fairly, including to disadvantaged segments of society. A shared overall narrative would spur concerted action — everyone coming together to use an array of approaches and solutions towards a common goal. Finally, there are many market levers that can help motivate the market and spark innovation, including boosting green finance to fund more initiatives. By working holistically, in a culture of collaboration, climate resilience can eventually become the new normal.

The next chapter contains case studies of five cities — Singapore, Hong Kong, Rotterdam, New York City, and Miami — showcasing their efforts in the fight against climate change. As prominent nexuses of economic activity, these coastal cities are compelled to respond to environmental challenges that threaten their liveability — and even survival. They also hold great power and thus have the responsibility to galvanise other cities in a concerted global effort towards climate resilience. Representing multiple nations and governance systems, the five cities also showcase a range of cultural contexts and approaches for designing policy and funding for resilience. Each city profile draws on the 10 principles to suggest next steps for advancing resilience, which can also be adopted by other cities.

CONCLUSION

Transforming cities to become climate resilient is a whole-of-society effort. It involves strategic and inclusive top-down implementation, concerted bottom-up initiatives, and cross-sectoral collaboration to address climate change. The 10 principles enumerated in this chapter underpin a cooperative ecosystem, demonstrating the ways in which the private sector, governments, civic organisations, academic experts, and the public can work together to mobilise resources and empower each other to join in the work of resilience. Examples from around the world illustrate how local governments, businesses, and communities have begun to translate these principles into action.

The Loan Market Association, Asia Pacific Loan Market Association, and Loan Syndications & Trading Association published the Guidance on Green Loan Principles to reduce greenwashing in the four components of a green loan: use of proceeds; process for project evaluation and selection; proceeds management; and reporting. While not many international standards have been enforced, businesses could proactively tap such resources when structuring their green products.

- As part of the Hong Kong Monetary Authority (HKMA) studies to develop its own green finance policies, a list of sustainable banking and green finance-related considerations from local and foreign banks is being assembled. To date, the HKMA has introduced three key measures to support and promote green finance in Hong Kong, as well as a self-assessment tool for institutions to evaluate their readiness.

Implementing effective standards would require a joint effort between the public and private sectors.

- As part of the Hong Kong Monetary Authority (HKMA) studies to develop its own green finance policies, a list of sustainable banking and green finance-related considerations from local and foreign banks is being assembled. To date, the HKMA has introduced three key measures to support and promote green finance in Hong Kong, as well as a self-assessment tool for institutions to evaluate their readiness.

As green markets continue to grow, moves towards standardisation can help unite the rest of the industry. For example, globally consistent “green bond” policies — definitions, assessment criteria, and parameters — can be co-created by the government and financial sector.

- The EU Taxonomy is a unified classification system that assesses the extent of sustainability in economic activities. It considers life cycle impacts, examining not only the primary and secondary impacts of the activity, but also the upstream enabling activity, domino/spillover effects, and downstream impacts on industries and people. The EU Taxonomy will be gradually integrated into EU legislation, which could help institutions set accurate performance thresholds in alignment with others. Likewise, the EU Green Bond Standard lays the ground rules for green bonds and aligns adopters with market best practices. These EU tools are currently being expanded and improved upon in partnership with various stakeholders as part of the EU’s financial plan for sustainable growth.

To enhance commitment while minimising greenwashing, it is important to set strict interest rate-linked criteria in the loan covenant (penalties are incurred when criteria are not met) and to evaluate performances according to definite monitoring parameters and targets.

- The Loan Market Association, Asia Pacific Loan Market Association, and Loan Syndications & Trading Association published the Guidance on Green Loan Principles to reduce greenwashing in the four components of a green loan: use of proceeds; process for project evaluation and selection; proceeds management; and reporting. While not many international standards have been enforced, businesses could proactively tap such resources when structuring their green products.

Implementing effective standards would require a joint effort between the public and private sectors.

- As part of the Hong Kong Monetary Authority (HKMA) studies to develop its own green finance policies, a list of sustainable banking and green finance-related considerations from local and foreign banks is being assembled. To date, the HKMA has introduced three key measures to support and promote green finance in Hong Kong, as well as a self-assessment tool for institutions to evaluate their readiness.

Implementing effective standards would require a joint effort between the public and private sectors.

- As part of the Hong Kong Monetary Authority (HKMA) studies to develop its own green finance policies, a list of sustainable banking and green finance-related considerations from local and foreign banks is being assembled. To date, the HKMA has introduced three key measures to support and promote green finance in Hong Kong, as well as a self-assessment tool for institutions to evaluate their readiness.

Implementing effective standards would require a joint effort between the public and private sectors.

- As part of the Hong Kong Monetary Authority (HKMA) studies to develop its own green finance policies, a list of sustainable banking and green finance-related considerations from local and foreign banks is being assembled. To date, the HKMA has introduced three key measures to support and promote green finance in Hong Kong, as well as a self-assessment tool for institutions to evaluate their readiness.

Large, influential, or government-linked institutional investors can lead their peers to build green investment portfolios and enhance environmental, social, and governance (ESG) transparency in investment decisions.
Delta works for the Hartelkering in Rotterdam, Netherlands.
Photo courtesy of gokturk_06/Shutterstock.com.

Chapter 4

CITY CASE STUDIES

SINGAPORE
HONG KONG
ROTTERDAM
NEW YORK
MIAMI
Physical

<table>
<thead>
<tr>
<th>Land area:</th>
<th>724.2 sq km[^1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion and metres of land above sea level:</td>
<td>30% ≤ 5 m above mean sea level[^2]</td>
</tr>
<tr>
<td>Coastline:</td>
<td>203 km (main island only)[^3]</td>
</tr>
<tr>
<td>Annual rainfall:</td>
<td>2,166 mm (1981-2010 long-term mean)[^5]</td>
</tr>
<tr>
<td>From 1980 to 2016, annual rainfall rose at an average rate of 101 mm per decade[^6]</td>
<td></td>
</tr>
<tr>
<td>Geography:</td>
<td>17 reservoirs (9 estuarine), almost two-thirds of the island is a water catchment[^8]</td>
</tr>
<tr>
<td>Temperature (°C):</td>
<td>27.4°C annual mean temperature (2018)[^9]</td>
</tr>
<tr>
<td>The rate of warming over Singapore from 1951 to 2012 was 0.26°C per decade, more than double the global average of 0.12°C[^10]</td>
<td></td>
</tr>
<tr>
<td>Percentage of publicly-owned land:</td>
<td>76.2%[^4]</td>
</tr>
<tr>
<td>Green cover:</td>
<td>>40%[^7]</td>
</tr>
</tbody>
</table>

Social

Population:	5.64 million (2019)[^11]
Population density:	7,804 per sq km[^12]
Population proportion:	71% local, 29% foreign-born[^13]
Infrastructure

Drainage infrastructure: ~8,000 km of drain, canal and river network

Coastal defence infrastructure: 70% to 80% of the coastline is protected by hard structures. The rest are natural areas such as beaches and mangroves.

Economic

GDP: S$508 billion (2019) (US$380 billion)

GDP per capita: S$88,991 (US$66,545)

Median household income: S$9,293/month (US$6,949/month)

City budget for climate agendas: An estimated S$100 billion (~US$70 billion) in the next 100 years, with an initial S$5 billion (US$3.7 billion) for the Coastal and Flood Protection Fund

Risk assessment

Temperature increase:
Between 1.4°C and 4.6°C by 2100

Sea-level rise:
Up to 1 m by 2100
Up to 4 m in the rare event of simultaneous occurrence of high mean sea levels, high tide, and high surges

Flood-prone area:
30.5 ha

Infrastructure at risk:
29 ha of flood-prone areas

Ageing population:
Proportion of residents ≥ 65 years old has increased from 8.8% to 14.4% (2009–2019)

Proportion of foreign workforce:
1.4 million, of whom ~70.1% are migrant workers who live in dormitories

CLIMATE IMPACTS AND CHALLENGES

As a low-lying city-state, Singapore faces an existential threat from sea-level rise caused by climate change. With natural shorelines making 20 to 30 percent of its coastline and 30 percent of its land less than five metres above mean sea level (defined at the Singapore Height Datum), Singapore is at risk of both inland and coastal flooding. In particular, places at less than four metres above sea level are at risk of flooding when sea-level rise (of one metre by 2100), high tides, and storm surges coincide. These places host key socioeconomic functions, such as the Central Business District in Singapore’s South-East, and Jurong Island in the South-West, where many industries and utilities are based. Singapore’s Prime Minister has explicitly announced these climate concerns at the National Day Rally 2019, signalling defence against climate impacts as a national priority.

Despite a projected increase in rainfall frequencies and volumes, droughts may also become more frequent. In 2014, Singapore experienced a record 27-day dry spell, with rainfall less than one millimetre per day. Rising temperature is also acutely felt by Singapore’s residents. Singapore is warming twice as fast as the global average, at 0.26°C per decade. Coupled with a high annual relative humidity of 83.9 percent, thermal comfort and general liveability in Singapore may be affected. There are also knock-on effects on public health, such as greater risks of mosquito-borne diseases like dengue.

Although Singapore faces a multitude of climate change impacts, most of them, with the exception of pluvial floods, are not at a scale or magnitude where they demand immediate remedies. Singapore’s
geophysical characteristics — equatorial location, relatively even terrain, and surrounding land masses — have given Singapore an advantage in averting climate-induced disasters like tropical cyclones and landslides.

Previously, a key challenge the Singapore government faced in building a climate-resilient city was the uncertainties in climate projections. Global- and regional-scale climate models did not provide data of adequate resolution for detailed understanding of climate change impacts on the island.

Commissioned studies and the establishment of scientific advisory groups in recent years have enabled more frequent public announcements on climate change threats and measures. However, while interest in climate change has grown, specific action has yet to be forthcoming. Of respondents to the Climate Change Public Perception Survey 2019, 84.8 percent strongly believed that climate change is already happening and will affect future generations if nothing is done, yet only 48.3 percent of those polled knew what steps they could take to address climate change. A possible explanation for this disconnect could be that guidance and platforms for the public and companies to contribute are still in their infancy, with the government more focused on communicating climate change impacts and consulting broader policy actions in its public engagement.

Companies in Singapore may also be reserved in taking climate actions because they do not feel the socioeconomic pinch to fully engage in climate resilience. This is in contrast to their counterparts in Rotterdam, New York, Miami, and Hong Kong, who have experienced losses from climate-induced disasters, which were turning points for them to actively engage in climate action. In addition, concerns surrounding climate change have only recently made their way into the consciousness of Singapore’s financial services industry. This explains the government’s recent effort to bolster Singapore’s fledging green finance market.

The practice of these relatively newer climate change concepts — mitigation, adaptation, and resilience — can be perplexing to companies untrained in the field, as these concepts coalesce into actions that have largely been framed for environmental sustainability. As such, the distinction of climate actions (e.g., carbon mitigation through energy conservation measures versus adaptation to urban heat by incorporating greenery) in the ongoing climate change conversation has been softened. It is hoped that as the government enhances its public and stakeholder engagement on climate change impacts and solutions, more companies will have a better understanding of climate change and be compelled to go beyond existing environmental sustainability actions to enhance climate resilience.

Of respondents to the Climate Change Public Perception Survey 2019:
- 84.8 percent strongly believed that climate change is already happening and will affect future generations if nothing is done, yet only 48.3 percent of those polled knew what steps they could take to address climate change.

The Singapore government has developed a Resilience Framework to guide the city’s plans for climate change adaptation. The framework helps identify climate change risks to residents and property and formulate adaptation plans to minimise climate impacts. However, the framework could be expanded to integrate mitigation strategies and involve other institutions and stakeholder groups in a more inclusive and integrated manner.

Government financing covers most of Singapore’s public infrastructure for climate mitigation and adaptation. The Ministry of Finance focuses on budgeting priorities while Singapore’s central bank, the Monetary Authority of Singapore (MAS), serves as the nation’s financial regulatory authority. The government’s S$100 billion (US$75 billion) estimate of climate change protection measures is planned to come from several sources: ministry budgets, borrowing, and reserves. National reserves are currently drawn to fund land reclamation projects.

RESPONSE TO CLIMATE CHANGE

Governance structures

As a city-state, Singapore has only one layer of government. To institutionalise Singapore’s domestic and international climate change efforts, the Inter-Ministerial Committee for Climate Change (IMCCC) was set up in 2007 to coordinate actions across government agencies and ministries. It consists of the Long-Term Emissions and Mitigation Working Group, the International Negotiations Working Group, and the Resilience Working Group (RWG), with the RWG studying Singapore’s vulnerability to the effects of climate change and recommending long-term adaptation plans. Later in 2010, the National Climate Change Secretariat (NCCS), Secretariat to the IMCCC, was established under the Prime Minister’s Office to set priorities, harmonise accounting, and strengthen strategic alignment across the government.

The IMCCC Executive Committee is chaired by the Permanent Secretary of the Prime Minister’s Office. The Long-Term Emissions and Mitigation Working Group is chaired by the Permanent Secretary of the Prime Minister’s Office and the Ministry of Trade & Industry. The International Negotiations Working Group is chaired by the Permanent Secretary of the Ministry of Foreign Affairs. The Resilience Working Group is chaired by the Permanent Secretary of the Ministry of National Development and Ministry of Sustainability and the Environment.
Building local capability on climate science

The CCRS will invest S$10 million (US$7.5 million) from 2019 to 2023 for the National Sea Level Research Programme. The programme funds research on sea levels around Singapore and seeks to develop more robust projections for future sea-level rise.

Coastal-specific climate change research

Singapore’s first climate change study on vulnerability and long-term impacts was completed in 2009 by the National Environmental Agency (NEA). More recently, the Coastal Adaptation Study was completed in 2017 by the Building & Construction Authority (BCA). It assessed the potential impacts of coastal inundation under possible climate change scenarios and long-term adaptation strategies, and aims to develop site-specific measures to enhance existing coastal protection.

Engagement

Public consultations through online submissions and focus-group protection were conducted by the NCSC to gather feedback on Singapore’s climate policies and create roadmaps for carbon-intensive industries. General sessions include 2015’s “Climate change and Singapore”; 2017’s “Singapore’s climate change strategy and carbon tax”; and 2019’s “Developing Singapore’s long-term low-emissions strategy”. More targeted discussions and completed technology roadmaps include e-mobility, green data centres, carbon capture and storage, and solar photovoltaic power.34 Encouraging public and private sectors alike to pledge for carbon reduction, the Ministry of Sustainability and the Environment designated 2018 as the “Year for Climate Action”.

Adaptation

At the National Day Rally 2019, Singapore’s Prime Minister highlighted that S$100 billion (US$75 billion) or more could be needed over the next 100 years to prepare Singapore for rising sea levels.35 Government agencies have implemented on-site measures to protect the coastline and reduce flooding risks; they are also studying new initiatives.

Singapore’s adaptation to inland flooding also includes water and drainage management. Helmed by PUB, Singapore’s National Water Agency, the Active, Beautiful, Clean Waters Programme was launched in 2006. The programme seeks to transform Singapore’s waterways and reservoirs beyond their drainage and storage functions to create environments for recreation and community bonding.36 It promotes the use of natural systems to enlarge drainage capacity and absorb stormwater temporarily so that peak runoff is reduced, thus lowering flood risk during heavy storms. Certified projects such as the Bishan-Ang Mo Kio Park establish successful flood resilience on a catchment level. In managing surface runoff on a neighbourhood scale, the Housing Development Board’s Biophilic Town Framework advocates for nature-based, resilient landscape features in public residential developments.37 At the individual development level, certain underground facilities have been retrofitted with elevated entrances and flood barriers.

To cope with intense rainfall, PUB has also implemented the “source-pathway-receptor” approach for catchment-wide solutions to achieve greater flood protection since 2012. This holistic approach introduces flexibility and adaptability to Singapore’s entire drainage system, addressing not just the drains and canals through which stormwater travels (i.e., pathway), but also areas generating stormwater runoff (i.e., source) and potential flood areas (i.e., receptor).38

Singapore’s drainage network is supported by large-scale infrastructure, such as the Marina Barrage constructed in 2008. It was initially envisioned to protect low-lying areas in the city from sea tides. The Barrage now also functions as a recreational site and a freshwater reservoir, in turn enhancing community bonding and water resilience.

More intense and frequent storms brought about by climate change may still overwhelm current drainage systems, especially as areas with no history of flooding now experience flash floods.40 The flash flood in December

Building Climate Resilience in Cities Worldwide

Chapter 4

City Case Studies

Given Singapore's limited alternative energy options, the city may be unable to reliably generate sufficient baseload electricity from renewable sources for its use. Nonetheless, Singapore is putting research and investment into renewable energy projects and plans to progressively phase out of internal combustion engine (ICE) vehicles towards cleaner alternatives by 2040. These can enable Singapore to reduce heat emissions from vehicles which contribute to the urban heat island effect. Studies show that EVs emit less heat than conventional ICE vehicles — the operating temperature of an ICE engine is 90–100°C, but 30–40°C for EV battery powering.

2019 flooded Singapore's western regions with 93 millimetres of precipitation recorded in an hour — about a third of the projected average rainfall for the entire month of December. Besides flood management, Singapore combats heat by providing trees for shade as well as sheltered walkways and linkways of over 250 kilometres. Singapore has committed to planting 1 million trees by 2030 to enhance shade and biodiversity. Industrial estates, one of the hottest areas in Singapore, will get more than 100,000 trees over the next 10 years.

Carbon mitigation
Carbon tax, research into "clean fuels", incentives to adopt electric vehicles, and the provision of charging infrastructure indicate progress towards the net-zero carbon status that is needed to prevent dangerous anthropogenic warming. Energy efficiency strategies, such as district cooling, better building design, and programmes such as the Minimum Energy Performance Standards on household and industrial appliances can minimise fossil fuel–sourced electricity generation and reduce greenhouse gas (GHG) emissions.

Inland flooding adaptation
In 2010 and 2011, Singapore’s prime shopping belt, Orchard Road, and its surroundings experienced unprecedented flooding. To enhance the shopping belt’s flood resilience and minimise economic losses, the Stamford Detention Tank and Diversion Canal were built. Completed in 2018, the underground tank has a capacity of 15 Olympic-sized pools; excess stormwater is subsequently pumped back into the river. The project cost S$227 million (US$170 million).

The Carbon Pricing Act
Valid since 1 January 2019, the carbon tax is set at S$5/tonne (US$3.70/tonne) of GHG emissions (tCO₂e) from 2019 to 2023. The carbon tax rate will be reviewed in 2023, with plans to increase it to S$10–15/tCO₂e (US$7.50–11.20/tCO₂e) by 2030.

Support for the transition to EVs
Buyers of electric cars and taxis can receive rebates up to S$20,000 (US$15,000), from 2021 to 2024. Singapore will also expand the EV charging infrastructure significantly from 1,600 points now to 28,000 by 2030.
Regulations and incentives

The Singapore government guides the private sector’s climate resilience work through regulations and incentives. Aligning with the risk of inundation for areas less than four metres above sea level, all new buildings must comply with new drainage codes. Since 2011, the minimum land reclamation level has been raised from three to four metres above mean sea level. Similarly, the PUB mandates that all new development or redevelopment projects of 0.2 hectares (0.49 acres) or more implement “source” solutions such as detention tanks to slow stormwater runoff. Other requirements to reduce flood impacts include setting minimum platform and crest levels and placing flood barriers, which are specified in PUB’s Code of Practice. Guidelines specific to the engineering, barriers, which are specified in PUB’s Code of Practice. Guidelines specific to the engineering, development, and design communities are also outlined in handbooks on the best practices in the planning, development, and operations of flood resilient developments.

BCA Green Mark criteria for non-residential buildings. Graphic courtesy of the Building and Construction Authority.

The government encourages developers to adopt environmentally-friendly building specifications through its BCA Green Mark Scheme. Buildings are assessed based on environmental impact and performance to promote sustainable design, construction, and operation. In 2009, the Inter-Ministerial Committee on Sustainable Development set the goal for 80 percent of Singapore’s buildings’ Gross Floor Area (GFA) to meet green building standards by 2030. To accelerate this, the Building Control Act was changed in April 2008 to mandate Green Mark certification for both new and existing buildings undergoing major retrofits or energy use change. The scheme could potentially be expanded to include resilience criteria.

The MAS has made environmental, social, and governance (ESG) reporting mandatory on a comply or explain basis since 2017. This ensures sustainability is a criterion in companies’ decision-making processes. The move has prompted companies to adopt established industry standards, encouraged industry-led capacity-building efforts, and developed Singapore’s green investment market.

Strategies by private sector and businesses

Businesses have adopted an array of strategies to promote both environmentally-friendly practices and climate solutions. They include incorporating climate-sensitive designs in their developments, engaging in industry-university research, developing for smarter and greener living, and supporting social good innovators.

Keppel Bay Tower, which seeks to exceed the performance limits of a Green Mark Platinum building, is Singapore’s first commercial development to power all its operations using renewable energy. Keppel Land is working towards achieving super-low-energy status for the development by combining new and emerging technologies such as a high-efficiency air distribution system, a cooling tower water management system, smart lighting, and intelligent building controls.

Other climate-sensitive buildings include the PARKROYAL COLLECTION Pickering, a hotel and office development which promotes natural cooling from vegetation and wind, and sensors to cut irrigation when rain is detected. These measures reduce energy consumption and combat anthropogenic heat by lowering heat waste produced from air-conditioning use.

Mandates for new critical infrastructure

Project consortiums for the upcoming developments of Tuas Port and Changi Airport Terminal 5 must abide by the mandate to build 5 metres and 5.5 metres above the mean sea level respectively, respectively.

BCA Green Mark Scheme incentives

Higher Green Mark rating requirements have been imposed for key growth areas through Government Land Sales (GLS). To generate land demand, the private sector is incentivized through various initiatives such as additional GFA and monetary support.

Green finance, a financial instrument dedicated to promoting environmentally-friendly and sustainable economic growth, has boomed in international markets. Singapore’s foray into green finance has been cautious and calibrated. MAS data show that just $56.5 billion (US$4.9 billion) worth of green, social, and sustainability bonds have been issued, a small portion of Singapore’s $420 billion (US$314 billion) corporate debt market. In 2017, MAS introduced the Sustainable Bond Grant Scheme to catalyse the issuance of green, social, and sustainability bonds across banking, insurance, and asset management sectors. The guidelines will set governance, risk management, and disclosure standards, and promote new opportunities for green investment.

In 2017, MAS introduced the Sustainable Bond Grant Scheme to catalyse the issuance of green, social, and sustainability bonds across banking, insurance, and asset management sectors. The guidelines will set governance, risk management, and disclosure standards, and promote new opportunities for green investment.

MAS launched a Green Finance Action Plan in November 2019 to move Singapore forward as a green finance hub. To build resilience to environmental risks, MAS will issue Environmental Risk Management guidelines across banking, insurance, and asset management sectors. The guidelines will set governance, risk management, and disclosure standards, and promote new opportunities for green investment.

Opportunities for green financing

Green finance, a financial instrument dedicated to promoting environmentally-friendly and sustainable economic growth, has boomed in international markets. Singapore’s foray into green finance has been cautious and calibrated. MAS data show that just $56.5 billion (US$4.9 billion) worth of green, social, and sustainability bonds have been issued, a small portion of Singapore’s $420 billion (US$314 billion) corporate debt market. MAS launched a Green Finance Action Plan in November 2019 to move Singapore forward as a green finance hub. To build resilience to environmental risks, MAS will issue Environmental Risk Management guidelines across banking, insurance, and asset management sectors. The guidelines will set governance, risk management, and disclosure standards, and promote new opportunities for green investment.

In 2017, MAS introduced the Sustainable Bond Grant Scheme to catalyse the issuance of green, social, and sustainability bonds across banking, insurance, and asset management sectors. The guidelines will set governance, risk management, and disclosure standards, and promote new opportunities for green investment.

In 2017, MAS introduced the Sustainable Bond Grant Scheme to catalyse the issuance of green, social, and sustainability bonds across banking, insurance, and asset management sectors. The guidelines will set governance, risk management, and disclosure standards, and promote new opportunities for green investment.
LESSONS LEARNT

Key insights from Singapore

During the Singapore workshop, participants discussed how things could be improved to enhance the private sector’s contributions towards building a more climate-resilient Singapore.

A “systems-based approach” in tackling climate resilience

Participants agreed on the importance to view climate resilience strategies using a “systems-based” lens, where urban systems — whether geophysical, economic, or community — interact, and at various scales. Specifically, the physical infrastructure’s climate-proofing should be considered in the project development phase, the design phase, and the construction phase. Strategies should be built on cross-sectoral collaboration and integration across spatial scales (e.g., building, neighbourhood, district, city) to enhance synergy.

Constraints on business response from climate impact uncertainty

Stakeholders must be mindful of each other’s constraints and different capacities to respond to climate change. Some companies shared that their uncertainty over specific impacts and inadequate comprehension of climate change projections prevent them from undertaking resilience measures. Insufficient data on climate change effects are publicly available, which also limits action.

Roadblocks for climate-sensitive designs

For most companies, resilience is not a core business activity, and many of them prefer a government mandate to drive resilience action. Most businesses in Singapore remain unconvinced of a business case to tackle climate resilience for fear of losing out to competitors who avoid upfront adaptation costs. Some companies who are willing to incorporate climate-sensitive designs into their development proposals expressed concerns about being unintentionally disadvantaged. For instance, in the real estate development industry, developers face time and resource constraints in adopting resilient and sustainable designs during the bidding period. Such designs may entail additional capital, resources, and complexity, on top of existing land and building requirements. Mechanisms to level the playing field are needed, whether through penalising those who do not incorporate resilience, recognising the additional commitment taken to achieve resilience at the project level, pricing resilience into the two-envelope tender system, or implementing performance-based standards. Smaller businesses will look towards industry heavyweights and government directives to follow suit and initiate climate-resilient changes.

Varied financing mechanisms for climate resilience

The government provides most of Singapore’s public infrastructure development and funding. Private sector funding is an untapped opportunity, but financing mechanisms and safeguards must be present so that projects are bankable and offer adequate return. The public and private sectors could explore co-sharing costs and evaluating climate risks upfront, similar to how finance and insurance are shared. However, climate change risks may be difficult to project and price in.

The government has been moving towards public-private partnerships (PPPs) to finance, maintain, and operate some public infrastructure.
like the Singapore Sports Hub, which is designed specifically to be climate sensitive, using natural lighting and a zero-carbon-impact cooling system for its stadium. However, current PPPs do not always specify climate-resilient infrastructure as a requirement.

Evaluation of the ecosystem

At present, efforts to build a more climate-resilient Singapore have primarily been led by the government, with some participation by well-resourced companies. Given prevailing uncertainties, lack of capacity, and little impetus to initiate change, most businesses remain passive in building climate resilience.

Although the role of consumers and local community organisations has not been discussed in depth, businesses point to their importance in driving market demand. Greater user demand and willingness to pay for sustainable and climate-sensitive solutions will make a stronger business case for the private sector to venture further into building Singapore’s climate resilience.

Opportunities and way forward

Elevate communication and collaboration across and within sectors

To advance the systems-based approach and better understand the conditions that can motivate joint endeavours for climate resilience, targeted, multi-stakeholder dialogues should be facilitated frequently. Although current engagements with the public and private sector have contributed to Singapore’s climate policies, concerns from some real estate development companies show that the engagements can be expanded beyond industries that are traditionally energy intensive, to include companies in other sectors. Such a model of engagement is increasingly pertinent, as the new generation of Singapore’s political leaders are seeing the need to “work with the people” to design and implement policies.14

Enhance norms and market conditions with industry leaders

Larger companies with the means to invest in climate resilience can lead the way by acting first, lowering the perception of risk and potentially changing industry norms. Corporations and governments could work more closely together to implement changes based on market needs and government priorities, as a way to signal smaller companies and businesses. Interventions to shift overall market conditions, change industry norms, and raise consumer expectations can include regulatory sandboxes for climate-responsive innovations.

Integrate climate resilience with sustainability

Singapore’s sustainability efforts have been comprehensive, given its limitations, and therein lies the opportunity to synergise resilience with these efforts. For instance, encourage the adoption of solar panels for energy efficiency and continuity during power disruptions, and expand the Green Mark Scheme to encompass clear performance-based resilience requirements.

Spur public interest and demand

While awareness of the growing climate change threat is rising, the public’s appetite to steer the climate change agenda is nascent. Other than small-scale individual actions, the public in Singapore remains relatively passive, given an over-reliance and trust in the government and lack of strong system-level signals to spur consumer demand, investments, and actions. Conditions may be changing — evidence of climate change and science is manifest, and vocal youth and environmental groups are raising awareness and trumpeting the urgency to respond to climate challenges. Stakeholders with data, such as the government, academia, and more resourceful companies, can spur climate literacy and consumer demand through data and information sharing to in turn bolster the business case for climate resilience. A holistic directive supported by the regular sharing of information on climate impacts and opportunities would be a good starting point for Singapore.
<table>
<thead>
<tr>
<th>CITY CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
</tr>
<tr>
<td>Land area:</td>
</tr>
<tr>
<td>1,106 sq km(^1)</td>
</tr>
<tr>
<td>(24% urbanised land)</td>
</tr>
<tr>
<td>Proportion and metres of land above sea level:</td>
</tr>
<tr>
<td>~15% is <5 m above Hong Kong’s Principal Datum(^2)</td>
</tr>
<tr>
<td>Coastline:</td>
</tr>
<tr>
<td>456 km along the coast of the New Territories,</td>
</tr>
<tr>
<td>and 722 km from 263 islands(^3)</td>
</tr>
<tr>
<td>Public housing (as a percentage of total housing):</td>
</tr>
<tr>
<td>45.4%(^4)</td>
</tr>
<tr>
<td>Annual rainfall:</td>
</tr>
<tr>
<td>2,400 mm(^5)</td>
</tr>
<tr>
<td>Green cover:</td>
</tr>
<tr>
<td>443 sq km of country parks(^6)</td>
</tr>
<tr>
<td>Social</td>
</tr>
<tr>
<td>Population:</td>
</tr>
<tr>
<td>7.50 million (2020)(^7)</td>
</tr>
<tr>
<td>Population density:</td>
</tr>
<tr>
<td>6,940 per sq km(^8)</td>
</tr>
<tr>
<td>Population proportion:</td>
</tr>
<tr>
<td>92% local, 8% foreign-born(^9)</td>
</tr>
<tr>
<td>Infrastructure</td>
</tr>
<tr>
<td>Drainage infrastructure:</td>
</tr>
<tr>
<td>2,427 km of drains and about 36 pumping stations(^10)</td>
</tr>
</tbody>
</table>
Economic

GDP:
HK$2,868.171 billion (2019) \(^{11}\)
(US$369.896 billion)

GDP per capita:
HK$382,046 \(^{12}\)
(US$49,271)

Median household income:
HK$35,500/month \(^{13}\)
(US$4,514/month)

Real estate sector’s share of GDP:
26% \(^{14}\)

City budget for climate agendas:
No specific fund

Risk assessment

Temperature increase: \(^{15}\)
1.3° to 2.2°C by 2051–2060
1.3° to 4.2°C by 2091–2100

Sea-level rise: \(^{16}\)
0.36 to 0.43 m by 2051–2060
0.60 to 0.98 m by 2091–2100

Flood-prone area:
Five flooding blackspots of minor, small, and medium scales \(^{17,18}\)

Infrastructure at risk:
US$416 billion as of 2011, rising to US$3.5 trillion by 2070 \(^{16}\)

Infrastructure at risk:
Estimated US$35.9 billion (2012) in assets; rising to US$1.2 trillion by 2070 \(^{19}\)

Ageing population:
About 26% over 65 years old by 2040

Typhoon Mangkhut in 2018 gave a glimpse of the aggravated climate risks Hong Kong is facing when Victoria Harbour incurred damages of HK$3.1 billion (US$400 million) in insurance claims. Yet Hong Kong was spared the worst-case scenario; had Mangkhut been a direct hit at high tide, the sea level in Victoria Harbour would have peaked at 5.65 metres, inundating Victoria Harbour. \(^{18}\)

By 2060, Hong Kong’s mean sea levels are projected to increase between 0.36 and 0.43 metres, under a Representative Concentration Pathway, or RCP 8.5 scenario. \(^{21}\) Much of Hong Kong’s central business district could be hit by extreme storm tides as early as 2030, with key financial services (e.g., HKEX, HSBC, Standard Chartered) and critical infrastructure (e.g., HK Port, Hong Kong West Kowloon Station) at risk of flooding. \(^{22}\)

The Hong Kong Observatory (HKO) noted that more extreme weather conditions and weather patterns are expected and can complicate public health issues. \(^{23}\) More frequent temperature-related illnesses, non-communicable and communicable diseases, physical injuries in extreme events, and mental health issues are expected. \(^{24}\) Heat stress, exacerbated by Hong Kong’s dense, high-rise urban conditions, asymmetrically affects vulnerable groups such as children, the elderly, and those in substandard living conditions (e.g., poor ventilation). \(^{25}\) The government should review the carrying capacity of the city’s health care system and evaluate its preparedness for such extreme events and the reallocation of health care facilities to maintain accessibility across all districts.

Natural terrain covers 60 percent (650 sq km) of Hong Kong’s total land area, \(^{26}\) and most developed Hong Kong was lucky! Mangkhut could have caused a storm tide of 5.65 metres. Infographic courtesy of CWR.
areas extend to very steep slopes. Extreme weather, flooding, and landslide occurrences are expected to increase, entailing cascading hazards across supply chains, water security and logistical issues for developers and insurance companies. Severe disruptions to food supply would pose a major challenge as Hong Kong imports 90 percent of its food.

The government’s sparse provision of information has translated into a substantial knowledge gap in the private sector. This is a pertinent issue as the private sector operates or owns many of Hong Kong’s critical assets. Despite some awareness of the risks involved, companies do not have access to the crucial information to make comprehensive risk assessments and plans. Knowing the extent of projected sea-level rise, the Hong Kong International Airport (HKIA) has constructed a 6.5-metre-tall seawall to protect its third runway. However, this can do little to support HKIA’s future operations if nothing is done to protect the transport lines feeding into HKIA from flooding. Disruptions to transport would prevent the airport from operating at full capacity.

One challenge Hong Kong faces is the misaligned approaches and sporadic efforts in tackling climate change issues. These could result from insufficient communications and engagement within and across stakeholder groups. Separately, despite abundant research by the government on climate science and impacts, the public do not seem to share the same sense of urgency. A public opinion survey on People’s Attitudes towards Climate Change found that 84 percent of respondents deemed livelihood (such as economic downturn or housing) and health issues more important than climate change, although climate change can also negatively affect livelihood and health. Most respondents also agreed that climate change is a significant problem, but should only be addressed in the future.

Misalignment in climate understanding and strategies is observed at the governance level, where updates to climate change projections have not spurred the development of a cohesive coastal flood management strategy. New projects are still being approved on floodplains and in high-flood-risk areas. Although the Drainage Service Department (DSD) has thus far listed flooding blackspots and locations vulnerable to physical flooding during heavy rainstorms, fluvial and coastal flood risks from storm surges remain inadequately accounted for in planning. As warned by China Water Risk (CWR), DSD’s current preparations are based on RCP 2.6, which falls far short of the current climate path, which is closer to RCP 8.5. CWR also highlighted that DSD uses 0.23 metre sea-level rise for future drainage and coastal adaptation; this is the low end of HKO’s low-case projection of 0.23 to 0.46 metres (for 2041–2060). The discrepancy widens for 2081–2100. Using the low-end estimates of the wrong scenario for planning will result in insufficient drainage capability to handle future flood levels as the RCP 8.5 high-end estimate for sea-level rise is 1.1 metres by 2100.36

Established by the Hong Kong Special Administrative Region (HKSAR) government in 2016, the high-level Steering Committee on Climate Change sets an overall direction to combat climate change. The committee issued a Hong Kong Climate Action Plan 2030+37, detailing its decarbonisation target following the Paris Agreement and the corresponding adaptation needs and actions to reach these goals and build further resilience. Despite such goals, the next three years saw few efforts besides the Council for Sustainable Development’s Public Engagement in 2019 regarding the city’s long-term decarbonisation strategy. Given the pressing need for climate action, the HKSAR government is increasingly urged to assume a more proactive role for policy action and public education. Hong Kong’s traditional policy style, which favours “positive non-interventionism”, should be revisited to promote climate change interventions from the government.

RESPONSE TO CLIMATE CHANGE

Governance structures

The high-level Steering Committee on Climate Change, under the chairmanship of the Chief Secretary for Administration, serves to steer and coordinate the climate actions of various bureaus and departments. The Environment Bureau (ENB) oversees emissions mitigation efforts and steers policy coordination; the Development Bureau covers adaptation efforts related to projected climate impacts and risks; and the Security Bureau handles resilience efforts to cope with and absorb climate change–related stresses and maintain the functional operation of public services, economic, and social activities. The Climate Change Working Group on Infrastructure (CCWGII) was also established to coordinate efforts among works departments to climate-proof government infrastructure.
Although the committee amalgamates all policy secretaries, there is no dedicated climate change authority to keep climate change high on the policy agenda. Departmental fragmentation may have hampered integrated policymaking on climate change issues. The ENB holds the main responsibility in taking climate action but is tasked with the difficult job of steering policy coordination across the many bureaus and departments. The ENB alone is unable to spur quick and far-reaching changes beyond its departmental responsibilities.

Under the Hong Kong 2030+ blueprint, the smart, green, and resilient city strategy outlined in the framework aims to reduce carbon intensity by 65 to 70 percent from 2005 levels by 2030. A corresponding range of strategies were introduced to minimise resource use, increase climate resilience to landslides, flooding, and typhoons, and enhance overall quality of life.

Government-led strategies

Knowledge and adaptation

Considering the rise in sea level, rainfall, and wind speed in connection with climate change, the Civil Engineering and Development Department (CEDD) and DSD, under CCWGI, updated the Port Works Design Manual and Stormwater Drainage Manual in January and February 2018, respectively. Other relevant works departments are also reviewing their design manuals and guidelines to account for climate change.

The transition towards nature and natural processes has also prompted the review of planning and development zones as a complete system. Studies, such as the ongoing Drainage Master Plan Review Studies, allow the government to identify vulnerabilities in the local drainage system to enhance local flood resilience.

Current measures include the construction of a stormwater storage tank in the low-lying Happy Valley area and investment in the Hong Kong West Drainage Tunnel. Current measures include the construction of a stormwater storage tank in the low-lying Happy Valley area and investment in the Hong Kong West Drainage Tunnel. **Blue-green infrastructure and “sponge city”**

DSD is striving to implement blue-green infrastructure to revitalise water bodies by incorporating green and eco-conservation elements into channel and river-training works. These efforts include planting in nullahs and rivers, engineering natural stream settings, preserving river ecosystems, and introducing landscape design to promote biodiversity and environmental beautification while maintaining drainage capacity. The Kai Tak Nullah upgrade will see a greener and more pleasant river with enhanced drainage capacities, as well as improved microhabitats and diversity through the installation of fish shelters and boulders.

DSD also introduced the “sponge city” concept of “following nature with resilience” to facilitate stormwater infiltration and reduce surface runoff through flood storage and retention. Part of the stormwater is collected and reused to optimise water recycling while enhancing the city’s flood resilience.
Water security and resilience

Hong Kong produces only 20 percent of its own fresh water. The government has thus been proactive in strengthening the city’s water security. The recently updated *Total Water Management Strategy 2019* outlines the plans of the Water Supplies Department to diversify the city’s water portfolio to six sources.40 The department will also strengthen its collaboration with DSD to develop policies in accordance with the “sponge city” concept, including the Inter-Reservoirs Transfer Scheme, which envisages a 2.8-kilometre-long water tunnel to connect Kowloon Byewash Reservoir and Lower Shing Mun Reservoir to increase local yield and reduce flood risk.41 The tunnel also serves to improve water resource allocation during times of intense rain and drought.

Enhancing slope safety

Over 70 percent of Hong Kong’s land consists of slopes. The concentration of urban areas on or near slopes generates a persistent threat of landslides, especially with more frequent and intense rainfall.43 Besides developing an extensive landslide monitoring network and a new landslide barrier system, the CEDD is promoting personal precautionary measures for emergency situations such as extreme rainfall and severe landslides.44 The Landslide Potential Index, a globally unique metric, is part of an early-warning system that estimates the risk of landslides based on the intensity and location of rain and the distribution of slopes.

Sustainable urban design and retrofits

In Hong Kong, mean temperature and the number of very hot days are projected to increase, exacerbating the urban heat island effect.46 Hence, the government has implemented a range of land use planning and urban design interventions over the past decade. These include issuing the *Hong Kong Planning Standards and Guidelines*, which promote better urban ventilation; mandating compliance for all major government projects and encouraging the private sector to undertake assessments for air ventilation47; promulgating the *Sustainable Building Design Guidelines* to mitigate the urban heat island effect; and encouraging the adoption of BEAM Plus to assess the sustainability performance of buildings.48

By 2046, Hong Kong will have about 326,000 private housing units aged 70 years and older. These buildings must also cope with climate change effects. The Urban Renewal Authority is committed to facilitate building rehabilitation and encourage building maintenance of existing buildings by launching an all-in-one Integrated Building Rehabilitation Assistance Scheme. The scheme aims to offer subsidies and technical support to affected owners, such as the Mandatory Building Inspection Subsidy Scheme and Operation Building Bright 2.0.

Outreach, data sharing, and engagement

To raise public awareness on climate change, the government has stepped up publicity and education. Besides circulating relevant materials through the media, promotional posters, and roving exhibitions, a dedicated website (https://www.climateready.gov.hk) was created as the one-stop platform to share the latest information on climate change. The Environment and Conservation Fund was also created to support non-profit organisations in their educational activities and demonstration projects. In addition, the city launched a large-scale...
The government is promoting the establishment of a Common Spatial Data Infrastructure (CSDI) to provide bureaus, departments, and private organisations with an information infrastructure to share geospatial data and support various smart city initiatives. Users could get timely geographical location information, thereby facilitating the development of spatially enabled, community-centric applications and services. Various maps have been produced and map services provided (e.g., free mobile map application MyMapHK) for the public. The government plans to roll out CSDI for public use by the end of 2022.

Strategies by non-governmental actors

Research and risk assessments

Non-governmental experts complement the role of the government in climate change research and dissemination to enhance the knowledge of the community and business sector and provide a critical perspective for quicker, more robust and transparent policy action.

Since 2015, the Joint Environmental Forum co-organised by the Environment Protection Department and the Mass Transit Railway Corporation provides a platform to discuss and cultivate mutual understanding among professionals, practitioners, and contractors.49,50

Strengthening the urban fabric

Non-governmental organisations (NGOs) are important in assisting districts to prepare for climate change and consolidate community resources, with a focus on the disproportionate impacts on lower-income groups and residents living in low-lying areas. During Typhoon Hato in 2017, the YWCA collaborated with various government departments, NGOs, the District Council, Rural Committee, and other local organisations to handle flood impacts, including evacuation and operation of a temporary shelter.49

Catalysing climate adaptation and sustainable development through community and business leadership

Within the business community, industry leaders have emerged to drive adaptation and sustainable development. Link REIT piloted projects on implementation of the Task Force on Climate-related Financial Disclosures (TCFD) and took a leading role in the United Nations Environment Programme Finance Initiative to develop comprehensive guidance and emergency response procedures to address the impact of climate change on investment portfolios. Link also launched the first issue of a HK$9.9 billion (US$1.2 billion) green bond, accompanied by an extensive Green Finance Framework that outlines procedures on green project selection and contains provisions that address climate change resilience (e.g., through BEAM Plus, energy efficiency improvements).49 These efforts lay the foundation for companies to become actively engaged in transforming Hong Kong into a city prepared for climate change.

ESG reporting and green investment

In 2019, green bonds, worth a total value of HK$78 billion (US$10 billion), were issued in Hong Kong, and cumulative green bond issuance reached HK$202.8 billion (US$26 billion) by the end of 2019.49 In addition, HK$7.8 billion (US$1 billion)40 of green bonds with a borrowing ceiling of HK$100 billion (US$12.8 billion) were issued in support of Hong Kong’s sustainable development. Furthermore, the Hong Kong Stock Exchange (HKSE) is demanding greater disclosure on environmental, social, and corporate governance (ESG) issues from its listed companies. Previously, HKSE had proposed making ESG reporting mandatory, but the Chamber of Hong Kong Listed Companies wanted HKSE to leave disclosure to the companies’ discretion. Nonetheless, greater disclosure is expected to attract more Western investors to Hong Kong as greater transparency will enable companies to better identify opportunities to reduce operating cost and enhance governance, risk mitigation and growth from sustainable development.

LESSONS LEARNT

Key insights from Hong Kong

Participants in the Hong Kong virtual roundtable noted that the HK SAR government has been addressing the substantial risks and impacts of climate change, especially water security and landslides. However, dialogue between government and the private sector is much needed. Recognising the government’s responsiveness to initiatives from the private sector, business representatives in the roundtable noted that they can organise themselves better to develop solutions for enhancing climate resilience before reaching out to the government for further support. Successful cases of private-sector-driven solutions may prompt the siloed governmental departments to come together to adapt the solutions for public uses.

Businesses are vulnerable to climate change, and with infrastructural assets susceptible to climate disasters, they are increasingly leading initiatives in research, corporate strategies, and technological innovation in response to the government’s comparatively unassertive policies. Corporate action and further pressure from NGOs are needed to stimulate the government to strengthen its ambitions in tackling climate change. The Fair Winds Charter, a policy initiative launched by Civic Exchange to reduce shipping emissions, showcased the significant leverage of civil society on the policymaking process when it was passed into legislation in 2019.

Evaluation of the ecosystem

While the private sector has started to embrace sustainability as a core issue, most efforts are still limited to large corporations and conglomerates and lack an economy-wide spread. A study on 500 randomly chosen ESG reports found only 12 percent have plans to deal with climate change issues, and only 20 percent of them divulged information on actions taken.40 Though several businesses, such as the Swire Group, have carried out risk assessments, few have specifically addressed climate change risks and several limit their account to rather optimistic global warming scenarios. The financial sector largely overlooks climate and water risks, despite their financial significance. Some companies acknowledge physical climate risks and TCFD but do not disclose the exposure of their loan books to these risks.42
Low-income families in Hong Kong are often exposed to precarious living conditions, for example in cage homes or subdivided flats in old private residential buildings of inadequate ventilation, shelter structures, and weather-proofing. Because climate change will exacerbate these vulnerabilities and deepen Hong Kong’s existing socioeconomic inequalities, resilience-building must also focus on equitable development.

Opportunities and way forward

Stronger government leadership and collaboration with the business sector

Participants observed that in Hong Kong, the private sector is relatively motivated to spearhead and implement climate actions and investments. The government’s culture of being receptive to private sector-led improvements motivates this. Frequent and perhaps more formalised discussion platforms for the private sector to gather, exchange knowledge, and discuss climate resilience issues can be encouraged to align the cooperation of the various industries (e.g., banking, investment, real estate).

Conversely, the government needs to consolidate cross-disciplinary action and citywide coordination in a coherent strategy to expand its existing plans such as the Hong Kong 2030+ Framework. The city’s infrastructure is in urgent need of attaining climate readiness by increasing its capacity to adapt and respond to future climate changes.

Because the severity of climate impacts depend in part on the preparedness of communities, the government’s approach should be flexible and incorporate a continuous learning and review process to build adequate contingencies and systematically eliminate vulnerabilities. Property developers can continue to collaborate with built-environment professionals and district councils to improve on urban ventilation and open-space solutions.

Development of Hong Kong as a green finance and insurance hub

With the finance industry a key economic sector, the insurance industry can support the economy’s resilience to climate change by incentivising resilience and funding recovery from weather events.

To start, investment in adaptation should be strengthened. The Climate Adaptation and Resilience Conference 2018 summary report suggests that by fostering innovation in the insurance of climate-related risks, particularly in designing and prioritising risk capacity, along with providing new coverage for changing insurance needs, Hong Kong could reassert its position as the leading insurance market. This includes measures such as offering parametric natural catastrophe insurance for corporate bodies (e.g., an Asia equivalent of the CCRIF58) and local communities, as well as infrastructure and catastrophe bonds.

The government can also collaborate proactively with industries towards developing finance mechanisms for climate change mitigation. An increasing receptiveness towards green finance initiatives, combined with the strength of Hong Kong’s financial sector, places Hong Kong in a position to lead the discourse on using capital for sustainable development. The government needs to highlight the unique business opportunities of climate change in terms of investment and collaboration, and introduce guidelines on the use of proceeds.
Physical

<table>
<thead>
<tr>
<th>Land area:</th>
<th>206.44 sq km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion and metres of land above sea level:</td>
<td>85% <5 m below mean sea level</td>
</tr>
<tr>
<td>Total coastline of the Netherlands:</td>
<td>30 km</td>
</tr>
<tr>
<td>Percentage of publicly-owned land:</td>
<td>40%</td>
</tr>
<tr>
<td>Annual rainfall:</td>
<td>850 mm</td>
</tr>
<tr>
<td>Green cover:</td>
<td>43.46 km (10.6% of total land area)</td>
</tr>
</tbody>
</table>

Social

<table>
<thead>
<tr>
<th>Population: 0.64 million (2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population proportion according to age group:</td>
</tr>
<tr>
<td>0–3</td>
</tr>
<tr>
<td>4–11</td>
</tr>
<tr>
<td>12–17</td>
</tr>
<tr>
<td>18–25</td>
</tr>
<tr>
<td>26–39</td>
</tr>
<tr>
<td>40–54</td>
</tr>
<tr>
<td>55–64</td>
</tr>
<tr>
<td>65+</td>
</tr>
<tr>
<td>Population density: 3,060 per sq km</td>
</tr>
<tr>
<td>Population proportion: 48.5% local, 51.5% foreign-born</td>
</tr>
<tr>
<td>Tourists/visitors each year: 1.3 million</td>
</tr>
</tbody>
</table>
Infrastructure

Drainage infrastructure:
2,400 km gravitational sewage system, 250 km pressurised pipes, 1,000 pumping stations, 4,000 km waterways

Coastal defence infrastructure:
Levers and dykes, supported by water plazas and tanks within the main city centre
The storm surge barrier, Maeslantkering, is expected to be able to protect Rotterdam from sea-level rise and storm surges at least until 2070

Economic

GDP:
€170 billion (2019)
(US$201 billion)

GDP per capita:
€270,610
(US$319,638)

Median household income:
€30,150 (annual; 2017)
(US$35,698)

City budget for climate agendas in 2020:
Total budget: €3.5 billion (US$4.1 billion)
Water management: €76 million (US$90 million)
Rotterdam WeatherWise: €2.5 million (US$3 million)

Risk assessment

Temperature increase:
1.4 °C by 2050

Sea level rise:
1 m by 2100

Flood-prone area:
31 ha

Infrastructure at risk:
15,000 properties and 2,000 vulnerable objects at risk of flooding
30% of residents without cooling in their home or district for heat waves
30,000 properties at risk of groundwater level disruption due to foundation problems

Population proportion of vulnerable:
15.3% of population ≥ 65 years old

Risk assessment

The Netherlands is located in a temperate sea climate, which means cool summers and cool winters. In recent years, the Dutch summers have become extremely hot and dry, with the country recording its highest-ever temperature of 39.2 °C in 2019. Excessive amounts of water have always been a key challenge for Rotterdam as a delta city and will continue to be, given higher occurrences of extreme weather.

Going forward, Rotterdam will have to grapple with new challenges of urban heat, which adds stress to existing infrastructures/buildings that were built for the temperate climate. The city plans to develop area-specific measures with regard to rainfall, heat, and water safety in the near term, while concurrently enhancing their knowledge of groundwater, land subsidence, and drought impacts in the future.

However, the city government of Rotterdam have not been alone in responding to climate change. The city has been successful in mobilising collective action and encouraging various stakeholders to play their part. This is partly owing to the “Dutch Diamond” model, where strong partnerships among the government, the private sector, civil society, and knowledge institutions have supported the development and piloting of resilient solutions in the city. Tried and tested successful pilots lay the foundation for more integrative and collaborative models of solutions in the future.

Climate change poses an existential threat to the low-lying delta and coastal city of Rotterdam. The impact of sea-level rise would hit the city hard for two main reasons. First, the entire 30-kilometre Dutch coastline affects Rotterdam, and second, 8% percent of the city has an elevation of less than five metres above mean sea level. Current risk assessment estimates that a rise of one metre is expected by 2100.
In addition, the city currently receives 850 millimetres of annual rainfall, which is projected to increase because of more intense and frequent cloudburst events as extreme weather events become the norm. Rainfall events are estimated to occur five times more frequently by 2050 and 10 times more often by 2085. This puts 31 hectares of flood-prone area at risk of inland flooding should rainfall events become more severe.

Increasingly, heatwaves and drought have become problems for the city. In 2019, the city had one of its hottest summer days on record, where temperatures rose to 42°C. This complicates existing infrastructure design and causes building heating problems where historically citizens have adopted double-glazed window panels to trap heat effectively for winter months. This has since led to more heat being trapped indoors during the summer months, posing serious health and economic risks to the city as around 30 percent of Rotterdammers do not have cooling systems in their buildings.

Instances of drought would affect groundwater supply, which threatens properties that rest on wooden piles and peat dykes. This causes foundation problems for approximately 20,000 properties and puts another 11,000 properties at risk of land subsidence and damage.5

In response to climate change, the city has adopted a multi-layer security method where flood risk is reduced by a mix of implementing flood prevention measures and adapting the spatial planning and urban design of the city to include water and disaster management. 9 This ensures that flood mitigation strategies are not restricted in silos and are holistically linked to urban development.

In Rotterdam, different aspects of water and flood management are managed by various organisations and financed on different levels through the Water Plan.

Governance structures

National governance

The municipality’s climate response takes guidance and direction from the Netherlands’ nationwide laws, the Water Act and the Spatial Planning Act. Under these acts, the Netherlands developed the National Adaptation Strategy and the National Delta Programme.6 Although these programmes promoted adequate flood management solutions following devastating floods in 1953, the Netherlands came to a turning point in its water management strategies after the flood events of 1993 and 1995.7 Then, the national programme moved towards integrating water and flood management with spatial planning for a more holistic disaster management.

Subsequently in 2006, the country recommended a strategy that encouraged “living with water”, resulting in the national Room for the River project, under which river beds were widened to reduce flood risk and reconnect the urban environment to rivers.8 The National Water Plan in 2008 went a step further to ensure that flood prevention strategies also help reduce the impacts of floods. This has led to the Meerhaagenvaardheid flood risk management approach, a multi-layer security method where flood risk is reduced by a mix of implementing flood prevention measures and adapting the spatial planning and urban design of the city to include water and disaster management.4 This ensures that flood mitigation strategies are not restricted in silos and are holistically linked to urban development.

Municipal governance

In Rotterdam, different aspects of water and flood management are managed by various organisations and financed on different levels through the Water Plan.

Organisations, Tasks, and Financing

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Task</th>
<th>Financing</th>
</tr>
</thead>
<tbody>
<tr>
<td>National/state water services under the Ministry of Infrastructure and Water Management (Rijkswaterstaat)</td>
<td>• Flood protection</td>
<td>General resources, pollution levy, national waters</td>
</tr>
<tr>
<td>Province of South Holland</td>
<td>Care for groundwater and rainwater runoff</td>
<td>Regional tax</td>
</tr>
<tr>
<td>Water boards:</td>
<td>Flood protection (regional)</td>
<td>Regional tax (amount of tax differs between the 22 regions in the country)</td>
</tr>
<tr>
<td>Water Board of Schieland and Krimpenerwaard</td>
<td>Water quantity</td>
<td></td>
</tr>
<tr>
<td>• Hollandse Delta Water Board</td>
<td>• Water quality (protection of surface water from pollution) and wastewater treatment in embanked areas</td>
<td></td>
</tr>
<tr>
<td>• Water Board of Delfland</td>
<td>• Wastewater treatment plants</td>
<td></td>
</tr>
<tr>
<td>Water company:</td>
<td>To be consulted during land use zone planning and has its own water legislation “keur”, which describes water activities allowed near and in watercourses and near and on embankments</td>
<td></td>
</tr>
<tr>
<td>Evides (semi-public)</td>
<td>Drinking water supply</td>
<td>Price</td>
</tr>
<tr>
<td>Rotterdam municipality</td>
<td>• Collection of stormwater</td>
<td>Local tax (amount of tax differs between the 22 regions in the country)</td>
</tr>
<tr>
<td></td>
<td>• Construction, management and maintenance of sewerage systems</td>
<td></td>
</tr>
</tbody>
</table>

Benthemplein water square on a sunny day. Photo courtesy of David Rozing.
Primary flood protection and defence infrastructure from major rivers and storm surges from the North Sea are managed by the national government and financed by the state’s general funds through the Delta Tax. For internal management of water infrastructure and drainage within the city, the Delta Plan provides a broad direction and sets national goals for municipalities and water boards to meet. How to achieve the goals, however, is left to city governments, which plan and strategize based on individual city characteristics. These would be managed and funded separately by the city council.

The city works with the provincial authority and water boards to provide facilities to discharge rainfall runoff and manage water in public areas.

The water boards (e.g., Hollandse Delta Water Board and Delfland Water Board), tasked with the Netherlands’ flood protection on a regional level, fund Rotterdam’s flood protection projects through respective regional taxes. The water boards also have their own set of water legislation that determines the type of activities and land use planning allowed for waterways and embankments.

To complement water boards, the municipality is responsible for collecting stormwater as well as the construction, management, and maintenance of the sewerage system. Following the Meerlaagse veiligheid flood risk management approach, the municipality has since integrated urban planning with stormwater collection strategies (e.g., water plazas and green buffers) to enhance the city’s collection capacity.

Moving forward, Rotterdam’s climate resilience strategies have since been broadened to incorporate more challenges as weather becomes more extreme. These would be managed and funded separately by the city council.

Financing

At the national level, the Climate Adaptation Administrative Agreement (2018) will disburse a total of €600 million (US$710 million) to various municipal governments to make the Netherlands more adaptable to climate change effects. Rotterdam also receives subsidies and grants from various European Union programmes (e.g., Sponge, LIFE UrbanAdapt, Life@Urbanroofs, Interreg). Adaptation measures not directly linked with the drainage system cannot be funded from the municipality’s drainage plan, and additional funding would be required to realise these multifunctional strategies. This could come from other city council programmes or co-financing by other parties (e.g., investments by residents and professional private companies). For instance, the Rotterdam Weathervise programme would be receiving a total of €20.6 million (US$24.4 million) in 2021 and 2022 to finance climate resilience solutions. The opportunities for climate resilience solutions and links with other non-climate programmes can be found in the accompanying map.

Map courtesy of the Rotterdam Office of Climate Adaptation.

![Map of Rotterdam's climate resilience strategies and links with other programmes](https://example.com/rotterdam_climate_resilience_map.png)

<table>
<thead>
<tr>
<th>Year</th>
<th>Event/Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>Start of the national Delta Plan — a national programme to strengthen coastal flood defences and reduce flood risk</td>
</tr>
<tr>
<td>1954</td>
<td>Maeslantkering (storm surge barrier in South Holland) finished (Delta Plan completed)</td>
</tr>
<tr>
<td>1997</td>
<td>Rotterdam’s Water Plan 1 — the city’s first action plan to address flooding</td>
</tr>
<tr>
<td>2005</td>
<td>Rotterdam Water City 2035 vision & the Flood IABR</td>
</tr>
<tr>
<td>2007</td>
<td>Rotterdam’s Water Plan 2 — a municipal plan with water management strategies and flood monitoring (both reduction of flood risk and water retention measures)</td>
</tr>
<tr>
<td>2008</td>
<td>Rotterdam Climate Proof programme — knowledge, actions and marketing communications plan for Rotterdam to be climate-proof by 2025</td>
</tr>
<tr>
<td>2010</td>
<td>Connecting Delta Cities — a Rotterdam-founded network of cities active in climate adaptation to exchange knowledge and share best practices</td>
</tr>
<tr>
<td>2013</td>
<td>Rotterdam Adaptation Strategy — an updated and comprehensive implementation strategies to become climate-proof by 2025</td>
</tr>
<tr>
<td>2015</td>
<td>Recalibration of Rotterdam’s Water Plan 2</td>
</tr>
<tr>
<td>2016</td>
<td>Delta scenario’s Rijmond-Drechtsteden — one of nine sub-programmes within the Delta programme Rotterdam Resilient City</td>
</tr>
<tr>
<td>2019</td>
<td>Rotterdam Weathervise</td>
</tr>
<tr>
<td>2021</td>
<td>World Adaptation Week Rotterdam</td>
</tr>
</tbody>
</table>

Water Management Policies in Rotterdam

<table>
<thead>
<tr>
<th>Year</th>
<th>Event/Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>Maeslantkering (storm surge barrier in South Holland) finished (Delta Plan completed)</td>
</tr>
<tr>
<td>2003</td>
<td>Rotterdam’s Water Plan 1 — the city’s first action plan to address flooding</td>
</tr>
<tr>
<td>2005</td>
<td>Rotterdam Water City 2035 vision & the Flood IABR</td>
</tr>
<tr>
<td>2007</td>
<td>Rotterdam’s Water Plan 2 — a municipal plan with water management strategies and flood monitoring (both reduction of flood risk and water retention measures)</td>
</tr>
<tr>
<td>2008</td>
<td>Rotterdam Climate Proof programme — knowledge, actions and marketing communications plan for Rotterdam to be climate-proof by 2025</td>
</tr>
<tr>
<td>2010</td>
<td>Connecting Delta Cities — a Rotterdam-founded network of cities active in climate adaptation to exchange knowledge and share best practices</td>
</tr>
<tr>
<td>2013</td>
<td>Rotterdam Adaptation Strategy — an updated and comprehensive implementation strategies to become climate-proof by 2025</td>
</tr>
<tr>
<td>2015</td>
<td>Recalibration of Rotterdam’s Water Plan 2</td>
</tr>
</tbody>
</table>

Future

- 2013: Launch of Rotterdam’s Resilience strategy — connecting the effects of climate change to other challenges in order to have an integrated approach
- 2015: Rotterdam Programme on Sustainability and Climate Change (2015–18) — the first official document that combines mitigation and adaptation initiatives to meet 2025 goals
- 2016: Delta scenario’s Rijmond-Drechtsteden — one of nine sub-programmes within the Delta programme Rotterdam Resilient City
- 2019: Rotterdam Weathervise
- 2021: World Adaptation Week Rotterdam

Map courtesy of the Rotterdam Office of Climate Adaptation.

![Map of Rotterdam’s climate resilience strategies and links with other programmes](https://example.com/rotterdam_climate_resilience_map.png)
Government-led strategies

Integrating water with urban planning (city government-led strategy)

The Rotterdam Climate Proof Programme (2008) and the Rotterdam Adaptation Strategy (2013) reflected the city’s climate adaptation efforts and the amplified role that urban planning plays in climate proofing the city beyond just water-related risks.

For a start, Rotterdam revised its Water Plan and looked at opportunities within the urban environment to store up to 600,000 cubic metres of water through green roofs, water squares, and building facades to slow urban runoff and reduce the urban heat island effect.

To manage this more effectively, Rotterdam was divided into 14 detailed sub-municipal zones, each of which has a specific problem and action plan related to the water system.15 These small-scale adaptive measures form part of the multilayer Meerlaagse veiligheid security approach.

The city collaborated with stakeholders from the water boards to develop water-sensitive solutions for the urban environment. The process was financed by the Supplement for Top Sector Alliance for Knowledge and Innovation (TKIs) of the Ministry of Economic Affairs and Climate Policy through grants and funding.16 Comprising a consortium of industry, knowledge institutions, and authorities, TKIs work in research initiatives across knowledge-intensive and export-oriented sectors to better translate Dutch science policy to societal and economic impacts. TKIs were introduced in early 2011 and received an initial budget of €500 million (US$592 million) from the national government, with an additional €800 million (US$947 million) supplemented by the public and private sectors by 2020 (industry making up 40 percent of it).17

Flexible infrastructural solutions are key to dealing with changing rainfall and climate uncertainties, given the interdependencies of the urban infrastructure system.

To achieve this, the Zomerhofkwarter (ZOHO) neighbourhood is a climate-proof neighbourhood where public spaces are reconfigured to have climate-adaptive infrastructure that not only focuses on clearing water away during tidal flooding and rain fall events, but also improves quality of life through vibrant spaces, water features, and water recycling.

The climate-proofing process saw the replacement of paved surfaces and the old sewage system into green buffers and rain gardens to absorb rainwater and reduce the urban heat island effect. The city also moved towards a new strategy of locating water-storage solutions on the surface and making them visible to contribute to the environmental quality of urban neighbourhoods. This resulted in the Benthemplein Water Square, a collaborative effort kick-started by landscape architecture firm De Urbanisten.

Leveraging smart technology and multi-sectorial efforts, local firm Studio Bas-Salta conceptualised and developed a smart rain barrel system that monitors weather forecasts online and is rigged to automatically release stored rainwater into gardens before predicted rainfall events.

The climate-proofing initiative subsequently received a sizeable European Union subsidy to further develop the ZOHO district for the development and maintenance of rain gardens and greening projects, carried out together with citizens.

Rotterdam’s urban water buffers programme incorporates climate adaptation measures into the city’s urban areas and neighbourhoods. The urban water buffers are able to absorb approximately 1,400 cubic metres of surplus stormwater and reduce the likelihood of flooding in the city. In addition to rainwater absorption, some of these water buffers prototyped a biofiltration system to collect and purify rainwater that falls on rooftops and parking areas before being reused for the neighbourhood Sparta Football Stadium artificial turf field.

Aside from the environmental benefits, these urban water buffers provide green relief and soften the landscapes within neighbourhoods — injecting added social value and reducing ambient temperature.

Flexible infrastructures and climate-resilient neighbourhoods

Flexible infrastructural solutions are key to far-reaching effects and cross-cutting nature, and successful adaptation to climate change’s localised impacts by increasing Rotterdam’s preparedness across different levels of the city. This would be achieved through ‘risk dialogues’ with the city government, district water boards, and district partners.18

The process of communicating urgent action was supplemented with financial incentives promoting climate-resilient solutions. This translated into a greater push by citizens to improve public spaces as well as their own private homes.

Private-sector strategies

Rotterdam has adopted a co-financing and incentive model to encourage real estate developers in adopting climate resilient strategies. This is in tandem with top-down requirements for climate-resilient features (e.g., water retention and retardation capacity, green buffers, well-shaded design, etc.) to be included in construction plans or redevelopment. This has led to a series of

Collective action strategy

In enhancing Rotterdam’s climate adaptation, the Rotterdam Weatherwise programme introduced in 2019 tackles the effects of climate change more holistically to build an adaptive and resilient city. Beyond water and sea-level rise, Rotterdam faces risk of heatwaves, droughts, land subsidence, and depletion of groundwater because of climate change. Rotterdam Weatherwise will identify climate change impacts, significant solutions, and associated costs across Rotterdam’s various districts, which would then be included in district agendas drawn up by respective district committees. By capitalising on each district’s unique social and physical characteristics, it hopes to tackle local district climate risks in a more targeted manner.

However, city-led initiatives within public space would only cover 40 percent of Rotterdam’s land area. The other 60 percent of the city is owned by private stakeholders.19 To ensure effective and successful adaptation to climate change’s far-reaching effects and cross-cutting nature, Rotterdam Weatherwise brought in social housing corporations, real estate developers, and private homeowners to climate-proof future homes, streets, and buildings. Through emphasising collective action, Weatherwise aims to reduce the severity of climate change’s localised impacts by increasing Rotterdam’s preparedness across different levels of the city.

Rotterdam Weatherwise programme introduced

In enhancing Rotterdam’s climate adaptation, the Rotterdam Weatherwise programme introduced in 2019 tackles the effects of climate change more holistically to build an adaptive and resilient city. Beyond water and sea-level rise, Rotterdam faces risk of heatwaves, droughts, land subsidence, and depletion of groundwater because of climate change. Rotterdam Weatherwise will identify climate change impacts, significant solutions, and associated costs across Rotterdam’s various districts, which would then be included in district agendas drawn up by respective district committees. By capitalising on each district’s unique social and physical characteristics, it hopes to tackle local district climate risks in a more targeted manner.

However, city-led initiatives within public space would only cover 40 percent of Rotterdam’s land area. The other 60 percent of the city is owned by private stakeholders.19 To ensure effective and successful adaptation to climate change’s far-reaching effects and cross-cutting nature, Rotterdam Weatherwise brought in social housing corporations, real estate developers, and private homeowners to climate-proof future homes, streets, and buildings. Through emphasising collective action, Weatherwise aims to reduce the severity of climate change’s localised impacts by increasing Rotterdam’s preparedness across different levels of the city. This would be achieved through ‘risk dialogues’ with the city government, district water boards, and district partners.18

The process of communicating urgent action was supplemented with financial incentives promoting climate-resilient solutions. This translated into a greater push by citizens to improve public spaces as well as their own private homes.

Private-sector strategies

Rotterdam has adopted a co-financing and incentive model to encourage real estate developers in adopting climate resilient strategies. This is in tandem with top-down requirements for climate-resilient features (e.g., water retention and retardation capacity, green buffers, well-shaded design, etc.) to be included in construction plans or redevelopment. This has led to a series of
pilots and effective small-scale climate-resilient projects done by developers at various levels of the city to experiment with future strategies.

For example, the Rotterdam Green Roofs programme capitalises on the city’s 14.5 million square metres of flat rooftops to encourage private owners and developers to undertake sustainable roof development and invest in climate adaptation measures. For a start, green roofs are found to provide cost savings of €500 (US$592) per cubic metre of water avoided at the ground/underground level. Some green roofs are designed with a retention capacity of 25 millimetres to reduce annual overflow volume by 19.5 percent. Currently, Rotterdam has activated approximately 270,000 square metres through the Rotterdam BlueLabel programme encouraging greater participation from citizens and private developers.

The project hopes to raise public awareness on exposure to flood risk by harnessing smart technologies to make complex data visual and easy to understand. Extreme rainfall events were analysed and used to calculate risk of floods with models.

The information is then made publicly available online where citizens can enter their addresses to view their flood risk and seek subsidies to undertake flood-resilient activities (e.g., infrastructure enhancements like raised steps or green spaces).

Insights from the BlueLabel project can be used to plan both small and large-scale interventions to build greater flood resilience. The project assists the authorities in monitoring flood vulnerability patterns over time to make spatial and infrastructural planning more climate proof and water resilient as well as in policymaking around flood protection standards.

For example, the BlueLabel project is a private-sector initiative by Achmea, Royal HaskoningDHV, and Nelen & Schuurmans. It is a risk classification system to identify risk levels of private properties and roads to flash floods. It encourages the public to be proactive in preventing disasters rather than waiting for recovery measures in the aftermath.

The BlueLabel map allows residents to understand their flood risk and initiate their own adaptive measures. Photo courtesy of Royal HaskoningDHV.

The project hopes to raise public awareness on exposure to flood risk by harnessing smart technologies to make complex data visual and easy to understand. Extreme rainfall events were analysed and used to calculate risk of floods with models.

The information is then made publicly available online where citizens can enter their addresses to view their flood risk and seek subsidies to undertake flood-resilient activities (e.g., infrastructure enhancements like raised steps or green spaces).

Insights from the BlueLabel project can be used to plan both small and large-scale interventions to build greater flood resilience. The project assists the authorities in monitoring flood vulnerability patterns over time to make spatial and infrastructural planning more climate proof and water resilient as well as in policymaking around flood protection standards.

For example, the Rotterdam Green Roofs programme capitalises on the city’s 14.5 million square metres of flat rooftops to encourage private owners and developers to undertake sustainable roof development and invest in climate adaptation measures. For a start, green roofs are found to provide cost savings of €500 (US$592) per cubic metre of water avoided at the ground/underground level. Some green roofs are designed with a retention capacity of 25 millimetres to reduce annual overflow volume by 19.5 percent. Currently, Rotterdam has activated approximately 270,000 square metres through the Rotterdam BlueLabel programme encouraging greater participation from citizens and private developers.

The project hopes to raise public awareness on exposure to flood risk by harnessing smart technologies to make complex data visual and easy to understand. Extreme rainfall events were analysed and used to calculate risk of floods with models.

The information is then made publicly available online where citizens can enter their addresses to view their flood risk and seek subsidies to undertake flood-resilient activities (e.g., infrastructure enhancements like raised steps or green spaces).

Insights from the BlueLabel project can be used to plan both small and large-scale interventions to build greater flood resilience. The project assists the authorities in monitoring flood vulnerability patterns over time to make spatial and infrastructural planning more climate proof and water resilient as well as in policymaking around flood protection standards.

For example, the Rotterdam Green Roofs programme capitalises on the city’s 14.5 million square metres of flat rooftops to encourage private owners and developers to undertake sustainable roof development and invest in climate adaptation measures. For a start, green roofs are found to provide cost savings of €500 (US$592) per cubic metre of water avoided at the ground/underground level. Some green roofs are designed with a retention capacity of 25 millimetres to reduce annual overflow volume by 19.5 percent. Currently, Rotterdam has activated approximately 270,000 square metres through the Rotterdam BlueLabel programme encouraging greater participation from citizens and private developers.

The project hopes to raise public awareness on exposure to flood risk by harnessing smart technologies to make complex data visual and easy to understand. Extreme rainfall events were analysed and used to calculate risk of floods with models.

The information is then made publicly available online where citizens can enter their addresses to view their flood risk and seek subsidies to undertake flood-resilient activities (e.g., infrastructure enhancements like raised steps or green spaces).

Insights from the BlueLabel project can be used to plan both small and large-scale interventions to build greater flood resilience. The project assists the authorities in monitoring flood vulnerability patterns over time to make spatial and infrastructural planning more climate proof and water resilient as well as in policymaking around flood protection standards.
LESSONS LEARNT

a) Key insights from Rotterdam

During the Rotterdam workshop, participants discussed the current state of play. Rotterdam — and by extension the Netherlands — has a strong culture of collaboration as part of the “polder culture”. This model of collaboration stemmed from a history of living with polders and behind seawalls. The idea that everyone chips in to maintain the dykes otherwise everyone would suffer has contributed to key outcomes in research and development to meet economic and societal needs.

For instance, collaboration with different segments of the city is essential for achieving resilient climate solutions that are multi-functional within the urban environment. The “Dutch Diamond” model that underpins Rotterdam’s adaptation strategies brings multiple stakeholders into the process of finding a solution. Through this, innovation can be achieved as funding can be stretched further to leverage maximum benefits.

Following that, getting buy-in from multiple stakeholders allows the city to mobilise action by citizens and the private sector to support its longer-term goals. This was achieved through government-led efforts to showcase and reimagine possibilities within the public realm. Such re-imaginings of public space that bring about benefits beyond climate resilience towards the constantly shifting nature of climate science as well as relevant innovation.

Funding for Rotterdam’s climate resilience comes mostly from the EU, federal, and city levels. There is scope for greater community and/or private funding to support major projects. Hence, where the Rotterdam Weatherwise programme is hoping to effect change is by exploring new models of co-financing to tap into new sources of funding to support climate resilience projects. This presents an opportunity to connect private industries with local neighbourhoods and local communities to develop localised solutions that fit conditions on the ground. The Benthemplein Water Plaza and Luchtsingel have demonstrated that such a collaborative, crowd-funded, and multi-stakeholder approach could work in Rotterdam.

b) Evaluation of the ecosystem

Nonetheless, climate change awareness and action are still mostly government led. Rotterdam’s levees may not be sufficient on their own to protect the entire population, highlighting a need to spur even greater community action — particularly for climate risks stemming from increased temperatures, droughts, land subsidence, and so on. Being a low-lying city delta city, participants noted that Rotterdam needs to raise more awareness and imbue its response to climate change effects with greater urgency.

One key gap that could help address this need is to bring the financial and insurance sectors into discussions of climate resilience. A concerted effort to reflect greater transparency over costs and risks of properties is one way of motivating action and increasing urgency. For instance, higher premiums for developments in flood-prone areas could be another way of conveying flood risk in addition to existing methods.

Current building codes may not be sufficient to allow or encourage more innovative solutions. For instance, the type of regulation that would apply to the floating pavilion in Rotterdam was not clear: Was it considered a building or a ship? Greater flexibility and adaptability in planning processes and guidelines could match the constantly shifting nature of climate science as well as relevant innovation.

Discussions surrounding private-sector reluctance to pursue climate-resilient solutions could be tied to a lack of guarantee on a return of investments. Cities, like Rotterdam, can do more to create new or highlight existing financial incentives and rewards for implementing resilience features, such as reduced insurance premiums, avoided losses from climate events, or continuity of operations during extreme weather.

The release of the Rotterdam Weatherwise programme is a concerted effort across Rotterdam’s city council and a clear signal on their long-term climate strategy. This should be encouraging to private developers as it lays out clear direction and opportunities for developers to make higher investments in the city while being assured of policies that keep Rotterdam relevant and protected from climate change impacts. This prevents the risk of locational obsolescence and is one strategy for capturing highly mobile businesses that transcend city/ national boundaries. Clear adaptation frameworks and transparent information would help build a good business case for real estate developers. To further support developers, governments could consider setting goals and create a sandbox for private-sector innovation and exploration, with different sandboxes tailored to different spaces/districts within the city based on ground characteristics.

There are opportunities to build from the significant resilience work already underway or completed. Frequently updated climate models with standardized guidelines for all developers could enable developers, consultants, and analysts to speak the same language and better assess climate risks across portfolio and calibrate climate resilient adaptations accordingly. Uncertainty in climate change scenarios and low carbon plans makes it difficult for developers to plan for future strategies. Flexibility in regulations and updated data sets can thus increase risk appetites for the private sector — allowing for more innovative climate resilient solutions.
NEW YORK

CITY CHARACTERISTICS

Physical

Land area – city and metropolitan:
City: 783.84 sq km
Metropolitan: 34,490 sq km

Proportion and metres of land above sea level:
62 sq km (8% of city land) under 2 m (6 ft) above sea level

Coastline:
836 km

Percentage of publicly-owned land:
58%

Annual rainfall:
1,270 mm

Green cover:
30,000 acres (14% of city land), managed by the NYC Department of Parks and Recreation

Geography:
The city is between several major water bodies that meet the Atlantic Ocean

Much coastal land on the city’s outer edge is low-lying, reclaimed using fill of geologically “soft” soil

Social

Population:
City: 8.3 million
Metropolitan area: 22.7 million (2019)

Population density:
10,586 per sq km in the city

Population proportion:
62% local, 38% foreign-born
Infrastructure

Drainage infrastructure:
Over 11,909 km of sewer pipes, 135,000 catch basins and 93 wastewater pumping stations

Coastal defence infrastructure:
A system has been proposed including protective beaches, hardened shorelines, rebuilt/enhanced dunes, offshore breakwaters, wetlands/living shorelines/offshore reefs, and deployable flood protection systems

Economic

GDP:
US$842.3 billion (2019)

GDP per capita:
US$73,463

Median household income:
US$96,100 (annual)

City budget for climate agendas:
US$3 billion in resilience initiatives in 2019

Risk assessment

Temperature increase (°C):
Up to 3°C (5.6°F) by 2050
Up to 5.7°C (10.3°F) by 2100

Sea-level rise:
0.5–0.8 m (1.7–2.5 ft) by 2050
1.2–2 m (4–6.25 ft) by 2100

Population proportion of vulnerable:
17.3% living in poverty
14.1% of population over 65 years old

Flood-prone area:
12,950 ha (~17% of city land) could be flooded by a 1% annual chance event

Infrastructure at risk:
US$101.5 billion (~8% of city total) is located within current 100-year floodplain

CLIMATE IMPACTS AND CHALLENGES

The largest city in the United States by population and economy, New York City is a global centre of finance, media, and culture. It is a low-lying city of islands, a coastal archipelago composed of five boroughs (large administrative districts), four of which are located on islands. The city has 837 kilometres of coastline and much of it is vulnerable to sea-level rise and coastal storms. It is arranged around a harbour at the confluence of the Hudson River, the Long Island Sound, and the Atlantic Ocean, exposing it to flood risks from multiple locations.

By the 2050s, nearly 1 million of its residents — more than in any other U.S. city — will live in the 100-year floodplain, which will expand significantly as sea levels rise. The population in flood-prone areas includes some of the city’s most vulnerable residents. One of the most at-risk areas includes the city’s, nation’s, and world’s most important economic centre — Lower Manhattan, a high-density, high-land-value area that is home to Wall Street and a growing residential community, which experienced significant flooding during Hurricane Sandy in 2012.
Floods may be the most visible aspect of climate change impacts, but the entire city is also at risk from extreme heat. Heat currently causes an average of 130 deaths per year in New York City, a number that will rise along with ambient temperatures, potentially by a factor of five. As laid out in its most recent report, the New York City Panel on Climate Change projects numerous climate risks, which include the following:

Extreme heat: By the 2050s, New York City can expect to see two to six heatwaves per year, lasting an average of four to 13 days, with average temperatures between 34°C and 36°C (93°F and 97°F). The city may experience 15 to 56 days above 32.2°C (90°F) and up to eight days above 38°C (100°F).

Sea-level rise and coastal flooding: Sea levels will rise from up to 25 centimetres in the 2020s to 1.8 metres by 2100, or more under an accelerated polar ice melt scenario; monthly tidal flooding will worsen; extreme floods will become more common and more severe.

Despite mounting challenges, New York City has always been a city of innovation. Led by the Mayor’s Office of Resiliency (MOR), and leveraging financial and programmatic support from the state and federal governments, the city has proactively used localised climate projections in land use and building policies and infrastructure designs. This began in 2006 with a City Council mandate to create a city agency dedicated to climate policy; the 2007 release of PlaNYC, the city’s first climate plan; and the creation of the NPCC in 2008. These efforts accelerated rapidly after Hurricane Sandy struck in October 2012. Causing catastrophic damage to buildings, infrastructure, and lives, the storm catalysed a sea change in policy and sharply heightened awareness of the city’s vulnerability to climate risk.

The city, together with government, science, and private sector partners, is undertaking multiple programmes to address flooding and extreme heat. While MOR is involved in the strategic planning of many programmes, other city agencies are generally responsible for implementation and operations.

Response to Climate Change

Governance structures

New York City’s climate adaptation currently includes over US$20 billion in coastal protection infrastructure. Roughly US$15 billion is sourced from the federal government, and the rest is provided by the city’s own budget and a small contribution from New York state. The city government has directed the bulk of federal aid to infrastructure projects that will reduce climate risk exposure, rather than simply rebuilding structures damaged by Hurricane Sandy. The city also plans to diversify its construction and operations funding sources from federal, state, city, and private funds.

The city government collaborates with the New York state and U.S. federal governments on large climate resilience infrastructure when greater capacity and depth of response are required. For example, the city received the bulk of its post-Sandy funding from the U.S. Department of Housing and Urban Development (HUD) and U.S. Federal Emergency Management Agency (FEMA), and several larger coastal flooding construction projects are either being completed or proposed by the U.S. Army Corps of Engineers, which oversees similar projects around the country.

This coordination among levels of government adds time and complicates administrative procedures for the approval of large climate resilience infrastructure projects. However, the magnitude of funding needed for major projects requires ongoing support from the federal government.

Intra-government collaboration, policy development, and planning

Organisationally, climate adaptation initiatives are overseen by the New York City Mayor’s Office of Resiliency. As a link between NPCC and other city agencies, MOR provides a high-profile centre for policy leadership on climate adaptation. It cultivates a systems approach to climate change by integrating resilience as a function of all local government departments, to be continually addressed at building, neighbourhood, and citywide scales. MOR partners closely with the Mayor’s Office of Sustainability (MOS), which is focused on supporting New York City’s ambitious carbon emissions reduction efforts.

The city is required by the law to update its climate programmes every four years, which were first called PlaNYC 2030 when they started under the Bloomberg administration in 2007. After Hurricane Sandy, the offices released a special report called A Stronger, More Resilient New York (SIRR), a 10-year, US$20 billion plan with 257 initiatives for adapting the city’s infrastructure to storm surge and sea-level rise. Eventually these plans were rebranded to OneNYC under Mayor De Blasio’s administration in 2015. These documents, along with studies, form the scientific basis for climate policy and infrastructure design guidelines for New York’s adaptation strategies.

The city continues its resiliency and sustainability planning in OneNYC 2050, released in 2019. OneNYC 2050’s many initiatives call for increased flood insurance enrolment, resilience retrofitting incentives, enhanced community-led disaster response, and new infrastructure projects. The city has been proactive in its efforts to prepare for climate change, but much remains to be done to ensure the city’s resilience in the face of future challenges.

Knowledge

New York City’s first climate adaptation efforts began in 2008 with the formation of the NPCC, a scientific panel focusing on climate and related policies. Then-mayor Michael Bloomberg convened the NPCC with funding from the Rockefeller Foundation to create and interpret climate data and projections for the city. It comprises scientists, academics, and private sector experts. The NPCC submits recommendations to the city government within one year of the release of Intergovernmental Panel on Climate Change reports or at least once every three years, based on review of global scientific findings and the results of its own local climate modelling and observations.
response, support for small businesses and community groups, and health initiatives to address extreme heat. OneNYC 2050 also calls for the continued implementation of SIRR’s coastal resilience projects.

Land use and zoning

New York City also uses land use policy, through zoning and building codes, to encourage resilient construction in designated floodplains. After Hurricane Sandy, the Department of City Planning (DCP) released the Flood Resilience Zoning Text, a set of temporary city code amendments that removes regulatory barriers to building or reconstructing buildings to more resilient standards. The amendments address allowing greater flexibility on height limits, placement of parking spaces and vulnerable mechanical systems, and uses of ground floors, thereby facilitating flood-proofing and building elevation. DCP proposed expanding these changes and making them permanent to ensure ongoing resilient construction in flood-prone areas.

Coastal infrastructure projects

In addition to its adaptation policies, the city embarks on multiple large-scale coastal infrastructure projects to maintain the city’s viability as a place for living and doing business. SIRR illustrated plans for New York City’s waterfront to address storm surge and sea-level rise hazards. It continues to drive the city’s large-scale coastal infrastructure projects, such as the Lower Manhattan Coastal Resiliency and East Side Coastal Resiliency projects.

Coastal infrastructure in southern Manhattan

In 2014, as part of the Rebuild by Design competition, a design team led by Bjarke Ingels Group (BIG) developed the BIG U, a proposal for a 16-kilometre coastal protection system of interconnected infrastructure and resilience elements that would surround the southern third of Manhattan. The proposal was broken into multiple components, several of which were eventually funded. One of these components, East Side Coastal Resiliency (ESCR), was initially awarded US$335 million in federal assistance. However, costs rose...
and the city has since committed the additional funding needed for the nearly US $1.5 billion project. ESCR will strengthen 3.9 kilometres of urban coastline, shielding several physically and socially vulnerable neighbourhoods on the Lower East Side of Manhattan with infrastructure such as elevated parks, flood gates, and flood walls.

A second phase of the work, known as the Lower Manhattan Coastal Resiliency project, which is more complex and costly than ESCR, has several segments that extend protection from where ESCR ends on the east to the western edge of Lower Manhattan. Flood prevention measures similar to ESCR’s will be implemented. However, the area directly in front of the Financial District itself will present a particular challenge.

The mile-long segment of the Financial District, because of its intense density of utilities, buildings, bridge piers, tunnels, and a major highway, cannot accommodate coastal protection infrastructure on existing land. Instead, land has to be reclaimed outward into the East River. This project could cost up to US $10 billion, requiring significant financial assistance from the federal government, and ‘will be one of the most complex environmental and engineering challenges [the] city has ever undertaken’. These infrastructure projects in Lower Manhattan demonstrate the depth and complexity of efforts to reduce New York City’s flood risk. While they aim to protect a key economic and cultural zone, the city will also need to move ahead on risk reduction infrastructure for other vulnerable coastal areas.

Rebuild by Design and the National Disaster Resilience Competition

A major milestone in the funding, conceptualisation, and execution of New York’s climate adaptation planning was the city’s participation in design contests: Rebuild by Design (RBD) in 2013 as a sponsor and the National Disaster Resilience Competition (NDRC) in 2014 as an applicant. The contests, with awards funded by HUD, aimed to stimulate innovative (often nature-based) infrastructural and social resilience projects submitted by private sector design firms.

A local initiative convened to respond to Hurricane Sandy, RBD ultimately funded three proposals in New York City, including the BIG U. RBD’s main outcome, besides a series of design proposals, was the successful partnership between the private design sector and local government to collaborate on large-scale resilient infrastructure projects, which became a model for climate change risk assessments and adaptation. The New York City government now relies heavily on private design firms to offer advice and expertise in design and construction and to conduct the community engagement and public meetings required by law to inform the public and generate support.

RBD’s success spurred the federal government to host the NDRC for the whole of the United States, which included an additional US $176 million fund for a flood protection compartment to the south of ESCR known as the Brooklyn Bridge–Montgomery Coastal Resilience project.

Retrofits

Under the leadership of the MOR, the city is evaluating how to help New Yorkers retrofit vulnerable buildings in coastal locations without protective waterfront infrastructure and inland. MOR will prioritise retrofitting existing buildings, which the city estimates will continue to represent over 90 percent of its buildings by 2050. As the majority of these buildings are privately owned residential and commercial properties, the city recognises the need for significant incentive and financing programmes to support owners with unequal financial capacity and motivation to pursue retrofits.

Private-sector strategies

Hurricane Sandy increased the real estate industry’s awareness of the potential damages and business disruption caused by climate change. Post-Sandy, the main response by private property owners was to relocate sensitive building systems, such as electrical and heating systems, to higher floors within buildings in the floodplain to avoid power and heat loss during floods. Some property owners with greater resources and capacities have gone further by incorporating flood resilience into building and public space design and emphasizing this as part of project branding. However, these advanced projects are exceptional rather than commonplace.

The Domino Sugar Factory redevelopment located on the northern Brooklyn waterfront offers one example of private sector adaptation. The developer, Two Trees, purchased the property a month before Hurricane Sandy flooded the site. In response, the entire site was raised above the floodplain, and new buildings were set back an additional 15.25 metres (50 ft) from the shoreline. Two Trees also invested US $50 million into an adjacent public waterfront park (required by zoning). Designed by James Corner Field Operations, the park is intended to act as a sponge for stormwater and an initial line of defence against storm surges.
Not all property owners are capable of this level of adaptation or have the necessary space to facilitate widespread solutions. A significant level of support (through incentives, insurance, or other finance structures) will be needed for smaller communities. Owners and developers are expected to work on existing buildings for flooding and heat exposure and to initiate retrofits, which can be more complex than designing new resilient developments. Building-and-neighbourhood-level flood protection will be of even greater importance as the city's waterfront continues to be targeted for redevelopment into expensive, high-profile housing, potentially placing future residents at risk.

Non-profit-driven actions

New York City has a rich ecosystem of non-profits that are deeply invested in working with communities to become more resilient to climate change. Nongovernmental organisations often partner with one another and with city government to achieve greater collective impact. Community-based organisations (CBOs) are non-profit groups deeply embedded in local, place-based initiatives, playing vital roles in neighbourhood-level adaptation. Organisations like WE ACT in the Harlem neighbourhood, the POINT Community Development Corporation in the Hunts Point neighbourhood, UPROSE in the Sunset Park neighbourhood, and the Fifth Avenue Committee in South Brooklyn — all waterfront or flood-prone neighbourhoods with significant proportions of racially diverse, low-income residents — are leading resilience and planning initiatives similar to those often taken on by city departments for planning or economic development. CBOs often liaise between residents and government, communicating local needs and influencing government-led resilience initiatives.

CBOs are important in advancing social equity in climate resilience. Some collaborate with the NPCC to explore how equity and social vulnerability can be fully incorporated into climate change vulnerability assessment and community adaptation planning.43

New York is also home to numerous non-profits that advocate for resilience and address other citywide urban issues relevant to resident quality of life. Several examples include the following:

- The Center for New York City Neighborhoods (CNYCN): A non-profit which links resilience and affordable homeownership, CNYCN assists homeowners with the risks of foreclosure with the FloodHelpNY.org tool that provides resources on flood retrofits, flood insurance, and free resilience audits for eligible owners.

- Rebuild by Design (RBD): After the post-Sandy design competition, RBD transitioned into an advocacy non-profit that continues its design-driven process of enhancing physical, social, and ecological resilience in cities.

- Regional Plan Association (RPA): RPA is a longstanding planning non-profit that advocates for responsible development within the larger New York region. With the social justice non-profit, Make the Road NY, RPA recently co-released the Climate Action Manual, a set of policy recommendations to tackle climate adaptation and social change simultaneously.

- The Waterfront Alliance: This non-profit increases coastal resilience citywide and regionally with the Waterfront Edge Design Guidelines (WEDGs), a set of design suggestions and a rating and certification system for waterfront projects based on the principles of resilience, ecology, and access.

Lessons Learnt

Key insights from New York City

During a stakeholder workshop held in February 2020, experts from the private, public, and non-profit sectors in New York City gathered to discuss a key area for growth for New York's policymaking on resilience: retrofits of existing buildings. Although the city's upcoming protective waterfront infrastructure is innovative and extensive, it cannot protect the city's entire 817-kilometre coastline. In addition, inland areas face a different set of risks from extreme precipitation, and citywide extreme heat risk must also be addressed.

Accessibility to high-quality data on risk and adaptation

Participants identified that high-quality localised data are a key tool for building owners to have a more accurate understanding of risk and a motivator to advance adaptation. To be used widely, this type of data must be low cost or free to owners with few resources. Currently, federally provided floodplain maps are the main source of this information; however, these maps are based on historical flood conditions that may no longer be accurate and often do not consider future climate projections. More accurate data are available from private consultants, but this service is often financially out of reach for small businesses and individual property owners. Owners also need information from local government regarding wider plans to guide their individual efforts.

Collaborative and multi-scalar approach to climate adaptation

Though individual actions at the property level have an impact when aggregated across the city, some resilience investments, such as temporary flood walls, require coordination to deploy. Piecemeal installation at the property level will not always be sufficient but is often too costly for individual owners to afford. However, it was unclear to participants what a district- or neighbourhood-wide, rather than property-by-property, approach could look like, especially in terms of funding, delivery, and technical feasibility.

Potential overlaps between energy efficiency retrofit programmes and resilience goals

The city and state governments already provide technical support programmes and financial incentives for private owners to retrofit their properties for greater energy efficiency, such as the local Retrofit Accelerator or the incentives for efficient construction and renovation from the MOS. These programmes have potential to stimulate retrofits that increase a building’s resilience too. For example, increasing building insulation can keep indoor temperatures low during heatwaves, reducing health effects and saving energy, while net-zero buildings maintain their own power sources if storms or heatwaves cause local power outages. In addition, participants noted that new energy efficiency legislation, such as New York City’s Local Law 97 (which requires large buildings to cut carbon emissions by 40 percent by 2030 or face steep fines) could have been an opportunity to stimulate progress on resilience retrofits in addition to sustainable retrofits.

Accounting for private-sector rationales and financing mechanisms in policies

The local government should be aware of the timing of private sector capital cycles when regulation is announced to increase the feasibility of new required investments. In addition, the cost/benefit analysis private owners might conduct is affected by how long they, or the next owner, might hold their assets before selling, as well as whether the effect of climate risk is priced into the asset’s value. Given that the city is interested in maintaining property value for tax revenue, workshop participants wondered how the city or other actors would take steps to preserve that
value, and whether part of the financial support for pursuing retrofits could come from the insurance industry, through reduced premiums for resilient buildings. Private action is also heavily motivated by government financial support and quick returns on investment, which requires swift action from code review officials and others.

Positive messaging
Private efforts to retrofit properties do not enjoy the same reputational and promotional benefits as impressive new resilient buildings. Positive messaging around the benefits of retrofits to improve the public perception of private companies would potentially help motivate action. Similarly, positive messaging emphasizing how private actors can become part of a unified social effort to prepare for climate change would provide an alternative to fear-based messaging around the severity of climate risks and may be more effective to stimulate action.

Evaluation of the ecosystem
New York City has made great strides on climate adaptation and has become a national leader in the U.S. resilience field, especially in the following areas:

- The opportunities for translating recovery momentum after paradigm-shifting events into permanent mechanisms for climate adaptation.
- The importance of proactive planning relative to climate change, and the integration of this infrastructure and policy planning with independent science-based climate analysis.
- The key role of partnerships in increasing the reach of resilience action, whether through national government funds, private approaches to real estate, or community organisations in building social equity. The diversity of actors in New York is an enormous resource for pursuing citywide adaptation.
- The opportunity for design precedents for climate resilience in large-scale redevelopments and signature parks to offer protective infrastructure and improve quality of life.

Opportunities and way forward
The following are several key future directions to pursue in terms of resilient building retrofits.

Provide fine-grained risk assessment data to help property owners understand their vulnerability
Currently, data are not specific or widely available enough to guide adaptation. City government agencies and the private sector could coordinate on the creation of combined data sets and maps, and education on projected future climate scenarios, to allow individual property owners to better understand the likely medium and long-term risks and decide what options exist for on-site mitigation measures. New York City has begun developing future flood risk maps.

Link existing energy efficiency retrofit programmes, incentives, and regulations with resilience-related retrofits
City government should find ways to expand existing energy efficiency programmes to include resilience goals to avoid inefficient replication and missed opportunities for synergy. Local Law 97 would have been a useful opportunity for this integration, but there are other pathways as well.

Support the creation of larger collectives to support private adaptation action
Property owners can only do so much on their own site: larger collectives are needed at the block, neighbourhood, and city scale to effectively reduce climate risk. There are existing entities that would be well suited for this role, such as block associations (a group of residents of a city block which organise to improve local quality of life) and business improvement districts, which collect additional taxes to fund local economic development projects. These groups could coordinate with individuals and small businesses to support resilience strategies beyond the scale of individual properties, to supplement the citywide resilience approaches managed by local government; however, effective funding approaches still need to be identified.

Develop communications and outreach materials that include success stories and positive social motivation
Education and outreach that emphasize the positive role of climate adaptation and retrofits may be necessary to better communicate the opportunities of climate action. The city can educate the private sector and the general public on the following:

- The action that can be taken by individuals, organisations and communities at multiple geographic scales;
- Clear strategies and options for retrofitting buildings that can be customized by building typology; and
- Examples of successful resilient retrofits, including the funding strategies. Pilot retrofit projects can be conducted within the highest-priority vulnerable communities.
MIAMI

CITY CHARACTERISTICS

Physical

- **Land area:** 92.9 sq km
- **Coastline:** 142 km
- **Green cover:** 7% of city land is used for parks

- **Proportion and metres of land above sea level:**
 - Roughly 26% of land is less than 1.8 metres above sea level; highest point is along a limestone ridge at 7.3 metres.
- **Annual rainfall:** 1,570 mm
- **Geography:** Porous limestone bedrock can exacerbate groundwater flooding and reduce effectiveness of seawalls

Social

- **Population:** 467,963 (2019)
- **Population density:** 4,300 per sq km
- **Population proportion:** 41.8% local, 58.2% foreign-born

1.和社会
2. 社会
3. 社会
4. 社会
5. 社会
6. 社会
7. 社会
8. 社会
9. 社会
10. 社会
11. 社会
12. 社会
13. 社会
14. 社会
15. 社会
16. 社会
17. 社会
18. 社会
19. 社会
20. 社会
21. 社会
22. 社会
23. 社会
24. 社会
25. 社会
26. 社会
27. 社会
28. 社会
29. 社会
30. 社会
31. 社会
32. 社会
33. 社会
34. 社会
35. 社会
36. 社会
37. 社会
38. 社会
39. 社会
40. 社会
41. 社会
42. 社会
43. 社会
44. 社会
45. 社会
46. 社会
47. 社会
48. 社会
49. 社会
50. 社会
51. 社会
52. 社会
53. 社会
54. 社会
55. 社会
56. 社会
57. 社会
58. 社会
59. 社会
60. 社会
61. 社会
62. 社会
63. 社会
64. 社会
65. 社会
66. 社会
67. 社会
68. 社会
69. 社会
70. 社会
71. 社会
72. 社会
73. 社会
74. 社会
75. 社会
76. 社会
77. 社会
78. 社会
79. 社会
80. 社会
81. 社会
82. 社会
83. 社会
84. 社会
85. 社会
86. 社会
87. 社会
88. 社会
89. 社会
90. 社会
91. 社会
92. 社会
93. 社会
94. 社会
95. 社会
96. 社会
97. 社会
98. 社会
99. 社会
100. 社会
101. 社会
102. 社会
103. 社会
104. 社会
105. 社会
106. 社会
107. 社会
108. 社会
109. 社会
110. 社会
111. 社会
112. 社会
113. 社会
114. 社会
115. 社会
116. 社会
117. 社会
118. 社会
119. 社会
120. 社会
121. 社会
122. 社会
123. 社会
124. 社会
125. 社会
126. 社会
127. 社会
128. 社会
129. 社会
130. 社会
131. 社会
132. 社会
133. 社会
Infrastructure

Drainage Infrastructure:
A complex system of storm drains, pipes, ditches, curbs, gutters, and culverts to collect stormwater and discharge it safely.

Coastal defence infrastructure:
Miami and its neighbour and climate planning partner, the separate municipality of Miami Beach, have a patchwork of public and private seawalls. In Miami Beach, 95% of these are privately owned.

Economic

GDP:
US$355 million (2019)

Median household income:
US$41,818 (annual)

Real estate indicators in Greater Downtown Miami:
- Residential units: 53,000
- Office space: 2.3 million sq m (25 million sq ft)
- Hotel rooms: 8,000

City’s budget:
- Total proposed budget for FY 2019/20 is US$11.3 billion
- New US$400 million Miami Forever General Obligation Bond will invest in infrastructure projects to alleviate climate risks.

Risk assessment

Temperature increase:
Roughly 180 days above 32.2°C by 2080, up from 130 days today.

Sea-level rise:
- Up to 0.8 m (2.5 ft) by 2060
- Up to 1.9 m (6.1 ft) by 2100

Flood-prone area:
- 600 ha of land under 1 m above sea level
- 40% of homes could be flooded by a 1% annual chance event

Infrastructure at risk:
US$416 billion as of 2011, rising to US$3.5 trillion by 2070.

Population proportion of vulnerable:
110,000 socially vulnerable people (23% of total current population) will be living in 1% annual chance floodplain by 2050.

Compounding its threats, the city is built so flat that Miami could potentially see flooding from it as well.

CLIMATE IMPACTS AND CHALLENGES

Miami faces a combination of water-related climate risks, including rising sea levels, increasing storms, and rising groundwater levels. In terms of property risks, it has been listed as the global city most vulnerable to sea level rise by the Organisation for Economic Co-operation and Development in terms of assets at risk, with over US$400 billion in assets exposed to coastal flooding. However, its coastal location is a key economic, environmental, and cultural asset to the city, and the region has responded to risk by becoming a U.S. leader for resilience planning.

Founded officially in 1896, Miami has grown into a large coastal city with a population of over 450,000, making it one of the largest city in the US. Miami has long been known for its amenities despite climate risks.

The exact asset that has made it so attractive to tourists and residents, and so valuable to real estate — its coastal location and stunning beaches — is also one of its most-at-risk resources, amplified by its geology. The flat, low-lying region averages an elevation of 1.8 metres (6 ft) above current sea level, with the only natural high ground a limestone ridge reaching an average of 3.6 metres and a maximum of 7.3 metres. Located on the Atlantic coast at the southern tip of the state of Florida, the city has limited ability to migrate inland to the west, as it already borders the vast wetlands known as the Everglades — an ecosystem so flat that Miami could potentially see flooding from it as well.

Compounding its threats, the city is built above porous limestone bedrock. This allows saltwater intrusion and pushes groundwater up, overwhelming stormwater infrastructure and causing flooding from below while also contaminating drinking water. In addition, high-tide flooding already causes consistent threats to infrastructure and will worsen as sea levels rise.

The city is also subject to numerous hurricanes and tropical storms, having recorded 31 since 1851. The most prominent of these in the past 30 years are Hurricanes Andrew in 1992, Wilma in 2005, and Irma in 2017. Andrew, in particular, became a cataclysmic event that reshaped Miami’s (and later, the state’s) approach towards climate events, especially through revised building codes and greater code enforcement. During Wilma and Irma, structures that were built or retrofitted according to the post-Andrew codes generally sustained much less damage than structures built to older codes. Only 25 percent of homes in Miami were built after 2000 to new codes first instituted in the mid-1990s, indicating that many structures may still be vulnerable.
Sea-level rise presents a significant challenge for the city's future. With sea levels projected to rise by nearly a metre (2.5 ft) by 2060, which is equivalent to a third of the average land elevation, and a projected increase in the frequency and strength of hurricanes ahead, the city is adapting to a dual threat of inundation — by water and by the costs of damage and adaptation.

Miami is also at risk from rising temperatures. Located in a tropical climate with high humidity, Miami already experiences 130 days per year over 32.2°C (90°F), a critical threshold for health effects. This frequency could increase to 180 days per year by 2080; in fact, because of its high humidity, by 2050 the city will likely see more days that feel over 32.2°C than any other U.S. city.24

RESPONSE TO CLIMATE CHANGE

Governance structures

A gap in federally declared disasters and corresponding recovery funding from 2005 to 2017, alongside the state government’s dismissal of climate change under its previous governor,25 led Miami to forge ahead with climate adaptation without the federal government — and until recently, without the state government. Most resilience efforts are largely self-funded by the city, rather than relying primarily on state or federal funding (in contrast to New York City, for example).

At the regional level, the local governments in Southeast Florida offer some of the best examples of intergovernmental coordination on climate change in the U.S. In 2010, Miami and its adjacent governing areas (counties26) established one of the only regional cooperative governance bodies on climate change in the United States, known as the Southeast Florida Regional Climate Change Compact. Composed of Miami's surrounding county, Miami-Dade, and three other counties (Palm Beach, Monroe, and Broward), the compact was formed to increase South Florida's advocacy power with the federal government and coordinate climate mitigation and adaptation activities and resources at a larger scale, given the similar risks these areas face.27 The compact released a Regional Climate Action Plan in 2012 (and released a one-time update in 2017), which identifies vulnerabilities, priority actions, and best practices that local governments can adopt to guide emissions reduction and resilience initiatives within their own jurisdictions.

Similarly, Miami's regional resilience strategy, Resilient305, is a collaboration among the city, its neighbouring city of Miami Beach, and their county government. This programme is funded principally by the budgets of its participating entities. Miami-Dade County, for example, has set aside US$22 billion of its multi-year operating budget for resilience programmes under Resilient305.28

Government-led strategies

For Miami, climate solutions are conducted on several scales, both regionally and locally. Similar to the Southeast Florida Regional Climate Change Compact, Miami’s participation in the Rockefeller Foundation’s landmark 100 Resilient Cities initiative was also a collaboration — the city of Miami partnered with the city of Miami Beach and Miami-Dade County to form a partnership known as Greater Miami and the Beaches. Chief resilience officers from these three jurisdictions collaborated on their resilience strategy and regularly meet to coordinate on policy. In May 2019, the three entities released a joint resilience strategy, known as Resilient305, which looks at the issue regionally — a rarity for a resilience strategy.

Resilient305 includes more than 50 actions to increase resilience, organised in three main categories:

- **Places** — location-based actions intended to reduce physical risk and enhance climate resilience through design and planning. The actions focus on using and improving natural systems such as coral reefs, beaches, and wetlands to reduce storm surge vulnerability; embedding resilience features into parks and open spaces; creating a sea-level rise adaptation strategy; and strengthening resilience planning, along with other actions like developing mobility hubs (locations that support multimodal transportation) and increasing connectivity and redeveloping public housing to mitigate climate risk.

- **People** — actions that aim to improve social resilience and quality of life for residents. The actions are geared towards supporting job growth, empowering neighbourhoods and networks to prepare and better respond to climate change, creating volunteer emergency training programmes, and educating and engaging communities through public art to raise awareness and enhance social sustainability.

- **Pathways** — focused on creating links among governments, businesses, community organisations, educational institutions, and others. Examples of actions include using a pre-planning for post-disaster toolkit, creating an Actionable Science Advisory Panel, and hosting workshops and convenings.

Much like other resilience strategies, Resilient305 will guide the broader region’s approach to climate adaptation and integrate climate concerns with socioeconomic strategies to strive for broad resilience to shocks and stresses. Public, private, non-profit, and civic entities will partner on various initiatives to drive implementation.

In addition to its participation in the regional Resilient305 initiative, Miami has its own city-specific resilience strategy known as Miami Forever Climate Ready, released in January 2020. This plan explicitly aligns with Resilient305, sourcing some of its actions from the larger plan and elaborating further on Miami’s resilience programmes and projects. Miami Forever Climate Ready also sets in motion recommendations from the climate compact’s second Regional Climate Action Plan.

Because the plan builds off earlier work, some of the projects it contains have already begun. For example, in 2019 the city began executing its Stormwater Master Plan, a comprehensive guide to updating Miami’s storm drainage system over the next 20 years. The system is outdated and frequently experiences inundation. This infrastructure upgrade process is designed to protect the city from rising flood risk over the next 40 to 50 years. The multi-phase plan involves a complete assessment of the city’s roads, drainage infrastructure, and water management features; recommendations to reduce the frequency, severity, and duration of flood events; a consideration of multiple sea-level rise scenarios; resilient natural and built coastal features and infrastructure; and, significantly, updated design standards for developers and land use and building code recommendations.

Further evidence of locally derived funding for local projects is the Miami Forever General Obligation Bond, a US$400 million investment approved by...
voters in 2017 to construct new infrastructure projects that reduce current and future climate risks. A bond of this type is backed by the full credit of the municipality issuing the bond and allows the municipality to use any available funds, such as general funds, to repay the bond when it comes due. The US$400 million in bond money will be used to invest in five categories of projects: sea-level rise and flood prevention; roadways; parks and cultural facilities; public safety; and affordable housing. The bulk will be invested in sea-level rise and affordable housing, to alleviate two of the city’s most pressing resilience issues — constructing affordable housing, especially in low-income, higher-elevation neighbourhoods experiencing gentrification pressure, will help the city work towards equity outcomes and ensure that lower-income residents are not displaced from lower-risk neighbourhoods.

The bond structure allows the city to make investments without raising taxes, which enables the city to pursue major climate adaptation infrastructure without increasing the cost of living for residents. The bonds have shown success so far, as some of the first projects subsidized through bond funding broke ground in 2019.19

Building codes and preparedness

Hurricane Andrew made landfall a few miles south of Miami in 1992, destroying more than 63,500 houses, damaging more than 101,000 others, costing US$26.5 billion in insured losses, and causing 65 deaths. It was, at the time, the costliest natural disaster for insured losses in global history.35,36

The storm prompted the state to revise its building code and conduct greater code enforcement. Structures are required to withstand higher wind speeds, including impact-resistant glass to protect from windborne debris, and use cinderblock masonry construction reinforced with concrete pillars and hurricane-strapped roof trusses, rather than lightweight wood, or “stick” framing.37 As a result, Florida — and Miami, specifically — has one of the strongest building codes in the nation.

Additionally, the city will be revising its code’s standards for public and private seawalls, raising the required height, creating standards for natural waterfronts, and enacting rules for when owners will be required to bring waterfronts up to these new standards.38 Miami is also in the process of updating its well-known form-based zoning code, Miami21, to include aspects that will address sea-level rise and climate change.39

Florida — and Miami, specifically — has one of the strongest building codes in the nation.

Private-sector strategies

All new developments in Miami must comply with the state building code and city standards. Although many new developments stop at meeting minimum code requirements, some leading developers are beginning to take proactive steps to build “beyond code” and focus on resilient design as a means of differentiating their product, securing lower flood insurance premiums, and offering better assurance for business continuity and preparedness for hurricanes and flooding.

For example, one prominent luxury apartment in Miami Beach, Mondar Terrace, has a base that is elevated 3.7 metres (12 ft), with a landscaped ramp to help residents avoid floodwater; the basement is sealed to prevent water intrusion; the building has a large generator for power outages and flood pumps; and the building’s glass is designed to withstand a Category 5 hurricane (the strongest designation).40

Moreover, buildings must follow building code rules for development in federally designated floodplains. They must elevate the first residential floor up to 1.5 metres (five ft) above the base flood elevation and have open spaces under that floor for floodwater to move through without damaging the building.41,42 Some developments are going beyond these requirements and elevating homes even higher, sometimes by up to 4.6 metres (15 ft).43

Other approaches include locating critical mechanical equipment on higher floors; installing flood doors, pump systems, or floodwater holding tanks; designing lower levels and basements to be easy to clean and resume service after flooding; and incorporating green infrastructure elements such as permeable paving, saltwater-tolerant planting, and berms to direct floodwaters away from building entrances.44 Many private properties also construct their own seawalls to protect from coastal flooding; however, seawalls are less effective in this region because of the prevalence of groundwater flooding.

A review of Miami’s resilience strategies by a panel of experts convened by the Urban Land Institute (ULI) in 2019 found that although the city has guidelines and regulations meant to support these design strategies, more could be done to encourage private sector participation through a combination of incentives and regulation.45

Additionally, questions remain as to how flood-resilient features will be incorporated in low-to-moderate-income areas, which are also highly vulnerable to flooding, but whose residents cannot afford luxury flood-resilient homes.

ECONOMIC MODELLING AS A GUIDE FOR INVESTMENTS

To guide their investments, Miami, Miami-Dade County, and Miami Beach have all used innovative “business case” analyses for a variety of projects — in essence, cost-benefit analyses to estimate the feasibility of various adaptation measures. These analyses, conducted differently by each jurisdiction, examine factors such as the degree of risk reduction achieved by different solutions, cost comparisons of different approaches, or the co-benefits to environmental or quality-of-life goals for all residents.46 This strategy, which often involves the use of economic modelling and external consultants, is worth highlighting for cities needing to make the case for why adaptation actions are financially advantageous and which ones maximize that advantage.
Non-profit-driven actions

Community-based organisations and non-profit organisations in Miami have been working to ensure that at-risk communities are included in the planning process for adaptation and are protected from both climate hazards and displacement. These organisations include:

- Catalyst Miami, an anti-poverty organisation that works to train and empower community leaders in climate resilience organising;
- The CLEO Institute, which works to expand climate change education, engagement, and advocacy; and
- The Miami Climate Alliance, a coalition organisation of more than 80 environmental and social justice member groups that provides coordination and works to prioritise equity within local climate adaptation.

These organisations play an essential role in expanding the reach of climate adaptation efforts across communities in Miami and work to prioritise the interests of community members with traditionally diminished political and socioeconomic influence. For example, Catalyst Miami works with the city to help inform city-led community outreach practices on climate planning projects like Miami Forever Climate Ready.

Similarly, Catalyst Miami and the city collaborate to ensure that the projects selected for funding under the Miami Forever Bond, and the process for selecting those funded projects, follow principles of equity, where funded projects are located in communities most at risk, and that diverse community members have the opportunity to participate in making funding decisions. 46

The Miami Climate Alliance notes that it successfully mobilised residents during Miami-Dade County’s 2015 budget hearings to direct funds towards climate adaptation, eventually leading to creation of the county’s Office of Resilience and hiring of the county’s first Chief Resilience Officer. 47

LESSONS LEARNT

Key insights from Miami

The city of Miami recently engaged ULI to convene a panel of national resilience experts from the public and private sectors who provided strategic recommendations on design, policy, and finance to increase resilience within downtown Miami’s waterfront area. The panel briefly analysed Miami’s progress on climate adaptation and created a roadmap for future directions. In their analysis, the panellists noted the following insights.

Base policy decisions on a comprehensive land use plan

To enhance overall resilience, many decisions must be made to boost overall resilience in areas such as zoning, transportation, open space, housing, sustainability, and public facilities. Although individual plans in each of these areas are helpful, a comprehensive development plan that considers all of them can provide the necessary unity to consider how resilience should apply citywide. Otherwise, cities can suffer from “over-planning” and find themselves acting in an uncoordinated fashion.

Include more than just financial returns in returns on investment

In addition to design and policy, the panel focused on how to finance investments in building climate resilience. Panellists noted that payback is different depending on the investor. “Traditional” investors are usually considered to be private institutions like developers, pension funds, and banks, who might invest in Miami by purchasing properties or bonds (such as the Miami Forever General Obligation Bond). These investors look to the government to protect their returns by mitigating physical risk to assets and drops in land and property value.

However, everyday Miami residents also invest time and money into their lives in the city and hope for a return through better quality of life. Quality of life will rise if investors (be they institutions, citizens, or even city governments) prepare for climate risks proactively, as a dollar invested today in resilience measures may generate significant savings tomorrow in repairing the damage incurred through inaction. More concretely, returns for resilient investment can include reduced insurance premiums and preservation of...
As noted, Miami has not received large-scale and economic resilience investments. Proportionally to Miami’s costs, could greatly for example at the magnitude received by New Development in 2014. Increased federal funding, the federal Department of Housing and Urban Disaster Resilience Competition hosted by city from applying for the US$1 billion National between 2011 and 2013, which prevented the Miami did not experience a major disaster (a new U.S. Army Corps of Engineers project). After Hurricane Irma and is currently subject to a safe, attractive, and affordable place to live and invest in.

Nonetheless, Miami has still made significant progress in its pursuit of climate adaptation. Continuing to scale up investments in resilient infrastructure and services by city government, advancing resilient building incentives and regulations for real estate, and including equity objectives and processes in adaptation planning through collaborations with community members will be key to ensuring that Miami remains a safe, attractive, and affordable place to live and invest in.

Opportunities and way forward

Miami has taken significant action to address its climate risks, and the urgency and level of commitment must continue, given the extent of vulnerability the city faces. As discussed in ULI’s 2019 expert panel, a key strategy for the city will be to direct future development toward available high ground and less flood-prone neighbourhoods, while simultaneously ensuring these safer zones contain room for residents of all income levels.

Intensifying development along this ridge could be led by the private sector, spurred by zoning changes, overlays, or financial incentives, and supported by direct public sector investment in infrastructure, affordable housing, and civic facilities. The city has existing and upcoming public transit options along its higher-elevation ridge, and increasing density in this area can redirect population growth in places which are less exposed to long-term climate risks.

The panel also recommended use of incentives for preserving and developing new affordable housing. Incentives can include dedicated relocation housing for flood-vulnerable households, especially within a half-mile of transit stations, to ensure housing is available to low- and middle-income households, who are most vulnerable to climate risks and existing socioeconomic inequalities. This gradual approach would avoid sudden disruption while creating new economic and housing opportunities for businesses and residents. Like many cities, Miami faces housing shortages and declining affordability, making the preservation and expansion of affordable housing imperative in a resilience strategy.

The panel also noted that focused development should be accompanied by improved design standards and strategies for waterfront edges along its bay- and river-facing urban zones. These strategies include slightly raising seawalls, expanding planting areas, and creating “living shorelines” (nature-based solutions mimicking the function of natural shorelines). These design standards would need to be continually adjusted to account for changes in sea level and storm projections. Resilient waterfront design has been a key focus of Greater Miami’s resilience plan, Resilient305, which includes several future projects and policies to enhance the built and natural coastlines that protect the city.

Other select recommendations by the panel include:

- Updating building and zoning codes to include some of the advanced steps taken by the real estate market as minimums, to accelerate adoption of resilience principles;
- Updating the Downtown Miami Master Plan to bring cohesion to the numerous existing planning documents the city has put together, as previously discussed;
- Using a transfer of development density programme or tax increment financing programme to encourage development in high-ground areas and provide capital for buildings to invest in flood-proofing measures if elevation is not possible;
- Creating a place-based organisation or conservancy to generate and manage private investment for the city’s waterfront areas; and
- Continuing to engage with residents and community organisations to connect climate adaptation steps with social and economic resilience needs like affordable housing or employment.

The city clearly has numerous opportunities to continue to scale up its resilience work citywide, while more can be done to address the resilience of existing buildings. However, its successes so far in establishing strong partnerships with local allies and generating new sources of funding place it in a strong position to continue expanding its adaptation work and remain an international centre of culture and climate resilience.
Applying the Principles: Getting Started in Your City, Company, or Community

Chapter 5

APPLYING THE PRINCIPLES:
GETTING STARTED IN YOUR CITY, COMPANY, OR COMMUNITY

THINKING GLOBALLY, ACTING LOCALLY: SPURRING YOUR ORGANISATION TO ACT

The five city case studies in the previous chapter reflect how the 10 principles for building climate resilience can be enacted by local governments and businesses. Although many of the principles focus on the organisational scale, individuals also have a major role to play, by influencing their organisations to make resilience a priority.

Far-sighted business leaders recognise the opportunity to incorporate resilience into their business models, while municipal leaders can prioritise resilience for all stakeholders in their communities and cultivate a more hospitable ecosystem that welcomes the private sector to join the work of resilience. This concluding chapter highlights key domains where individuals in any sector can get started in applying the 10 Principles, as they seek to make their cities more climate-resilient.

1. Build Awareness

Stay informed
Some risks associated with climate change may not be apparent or may arise unexpectedly — recall from Chapter 2 that there are both physical risks and transition risks. Make use of existing reports, data sets, and resources, and attend public forums and webinars (e.g., by the Centre for Liveable Cities, Urban Land Institute, C40, and Resilient Cities Network) to understand the risks faced by your region, business, property, or residence.

Know your resources and local landscape
Identify local government agencies and civic groups working on resilience. Recall Principle 1: Elevate resilience as a goal for all sectors and stakeholders. Find out who is active in your vicinity, whether through citizen engagement, climate justice, conservation, policy or other angles. Search for location-specific resources, such as maps, design guidelines (e.g., Waterfront Edge Design Guidelines by the Waterfront Alliance), resilience toolkits (e.g., Blue Label for home assessments or The Resilience Shift for life cycle analysis), and checklists of recommended actions (e.g., the National Fire Protection Association’s safety checklist) to make your business or property more resilient.

2. Start a Conversation

Initiate a dialogue
Is there a resilience working group in your organisation, a local advocacy group in your community? If so, join the conversation. Otherwise, seek out diverse individuals interested in resilience. Form a group to carry out activities such as assessing risks in your area and implementing resilience measures within your neighbourhood. Self-organised groups may eventually garner interest and participation from others.

Learn from peers
Look out for building features, organisational practices, and innovative actions by neighbours, industry peers, or other cities. Companies that adopt Principle 3: Leverage opportunities to enhance liveability are worth emulating, as they present a clear business case that makes projects more attractive.

3. Take Action to Increase Resilience

Mainstream resilience thinking
Organisations can develop an internal resilience index or adapt one from public resources (e.g., Arup’s City Resilience Index or the Task Force on Climate-related Financial Disclosures’ reporting framework), and update internal operations plans, external contracts, and public-facing media to reflect resilience goals.

For companies, the goal is to make “resilience” the default mode of operating, much as “sustainability” has become a norm. This requires understanding climate risk exposures across supply chains and business processes, and how resilience investments add value. Inquire how your company is analysing and managing climate risks, or if it has not, determine who can do so. Many real estate companies have sustainability or risk management teams whose remit includes resilience.

For governments, many agencies or departments can participate in resilience efforts, often spearheaded by environmental or urban/regional planning offices. Find out whether other government bodies are working on a climate resilience or sustainability plan. Contribute by supporting relevant staff members or joining meetings in your jurisdiction; resilience is cross-cutting, and many agencies have a role to play. Some municipalities are adding resilience requirements into land use regulations or risk management teams whose remit includes resilience.

Learning from past coastal storms, Partners HealthCare underwent a fundamental shift in its approach to the design of the Spaulding Rehabilitation Hospital. Besides sustainability, it focused on resilience, through careful planning using data and documented evidence. Photo courtesy of Steinkamp Photography.
Request action
For tenants, there may be local programs, often run by energy utilities, that help you engage with your landlord to make minor energy/weatherisation retrofits, saving energy and increasing resilience. Exemplifying Principle 9: Motivate the Market, Spur Innovation, these programmes (e.g., Mass Save in the U.S. state of Massachusetts) may provide rebates or financing for property owners to incentivise upgrades. Research local programmes and talk to your landlord about getting started.

For owners/property managers, keep tenants informed about the building’s vulnerabilities and actions taken to reduce risk. To promote sustainability among tenants, consider “green leases”, which require residents to participate in sustainability and resilience efforts to achieve greener, safer buildings. These actions help address Principle 6: Spur united action through a common narrative.

For property developers, you can request that designers consult resilience/sustainability rating systems and design guidelines. Explore the use of green bonds, sustainability-linked loans, or other resilience-linked financing.

These are manifestations of Principle 2: Operate across space, time, and organisations and Principle 10: Normalise green finance to fund projects.

Cultivate Alliances and Partnerships

Build a coalition to co-develop synergistic solutions
Join a climate-related network that seeks interdisciplinary, collaborative climate solutions. Conduct outreach to stakeholders through local chambers of commerce, business improvement districts, or non-profit alliances. Support their work, and leverage their activities to drive implementation in your own organisation. Draw on Principle 7: Nurture a culture of collaboration in your coalition-building, which should amplify local voices to enact Principle 9: Strive for equity, access and inclusion. Inclusive approaches are likelier to be accepted, successful and beneficial to the broadest range of stakeholders.

Seek partners beyond city borders
Governments can look to neighbouring cities or regional groups (e.g., Southeast Florida Regional Climate Change Compact) or international networks (e.g., C40, GRCN, or ICLEI). Memorandums of Understanding (MOUs) on climate change (e.g., MOU between the United States, Canada, and Mexico) or multilateral collaborations such as Making Cities Resilient 2030 can also promote learning exchange.

Reassess and Recalibrate

Review risks and vulnerability regularly
Uncertainty surrounds climate change impacts, globally and locally. As circumstances shift, re-evaluate your exposure and adjust assumptions, policies, and projects in line with updated climate science. Principle 8: Embody flexibility in approaches and solutions requires scrutinising outcomes, assessing effectiveness, and adapting risk management strategies.

This publication highlights how city governments, the private sector, and other stakeholders can benefit from greater cooperation, suggesting 10 principles to motivate action toward resilience. While our core workshops took place in five coastal cities, the research draws from many global contexts, and the distilled principles can be applied to cities of all kinds. Growing their collective strength to address the existential climate crisis requires cities to recognise shared responsibility and work across spatial scales.

Beyond city borders, knowledge sharing and support among municipalities builds upon their diverse experiences and complementary strengths. The many intergovernmental coalitions and specialist city networks cited in this publication are testament to the possibilities of global cooperation.

Above all, an integrated approach is key to climate resilience. Besides the physical and infrastructural dimensions of resilience, stakeholders must also consider economy, culture, ecology, and health. Efforts that take a systems lens will be more robust in building a city’s capacity to adapt to climate change, among other trends and disruptions.

Advancing climate resilience in cities worldwide is a complex and difficult undertaking that requires forward-looking leadership, broad participation, and integrated planning. By drawing on a support network of governments, businesses, civic organisations, and individuals, it is not only possible to build a more sustainable and liveable future — in numerous cities, the process has already begun.
Chapter 1: Climate Change, Coastal Cities, and Resilience

e=3&locale=en

Chapter 2: Partnering on the Climate: The Business Case

References

Chapter 4: City Case Studies: Singapore

13. Urban Land Institute, “Sixty percent of the world’s population will be in urban areas by 2050”, 8 Mar. 2019, https://www.nationalgeographic.com/environment/2019/03/28/the-air-is-cleaner-explained/
Building Climate Resilience in Cities Worldwide

Chapter 4: City Case Studies: Hong Kong

Chapter 4: City Case Studies: Rotterdam

9. 30 Hong Kong, Hong Kong City Case Studies: Hong Kong
11. 32 Hong Kong, Hong Kong City Case Studies: Hong Kong
12. 33 Hong Kong, Hong Kong City Case Studies: Hong Kong
13. 34 Hong Kong, Hong Kong City Case Studies: Hong Kong
16. 37 Hong Kong, Hong Kong City Case Studies: Hong Kong
17. 38 Hong Kong, Hong Kong City Case Studies: Hong Kong
18. 39 Hong Kong, Hong Kong City Case Studies: Hong Kong
19. 40 Hong Kong, Hong Kong City Case Studies: Hong Kong
20. 41 Hong Kong, Hong Kong City Case Studies: Hong Kong
21. 42 Hong Kong, Hong Kong City Case Studies: Hong Kong
22. 43 Hong Kong, Hong Kong City Case Studies: Hong Kong
23. 44 Hong Kong, Hong Kong City Case Studies: Hong Kong
24. 45 Hong Kong, Hong Kong City Case Studies: Hong Kong
25. 46 Hong Kong, Hong Kong City Case Studies: Hong Kong
26. 47 Environment Bureau and Environmental Protection Department, Hong Kong, Hong Kong Climate Change Report 2015. 2015. https://www.epd.gov.hk/epd/misc/Hong Kong%20First/Singapore%27s%20Update%20of%201st%20NDC.pdf.
27. 48 Environment Bureau and Environmental Protection Department, Hong Kong, Hong Kong Climate Change Report 2015. 2015. https://www.epd.gov.hk/epd/misc/Hong Kong%20First/Singapore%27s%20Update%20of%201st%20NDC.pdf.
28. 49 Environment Bureau and Environmental Protection Department, Hong Kong, Hong Kong Climate Change Report 2015. 2015. https://www.epd.gov.hk/epd/misc/Hong Kong%20First/Singapore%27s%20Update%20of%201st%20NDC.pdf.
29. 50 Environment Bureau and Environmental Protection Department, Hong Kong, Hong Kong Climate Change Report 2015. 2015. https://www.epd.gov.hk/epd/misc/Hong Kong%20First/Singapore%27s%20Update%20of%201st%20NDC.pdf.
31. 52 Environment Bureau and Environmental Protection Department, Hong Kong, Hong Kong Climate Change Report 2015. 2015. https://www.epd.gov.hk/epd/misc/Hong Kong%20First/Singapore%27s%20Update%20of%201st%20NDC.pdf.
Contributors

CLC and ULI would like to extend their deepest gratitude to those who have contributed to the research in one way or another, whether it is through their participation at the workshops, interviews and site visits, or providing an expert review of the content.

Singapore

Adèle Tan, Urban Redevelopment Authority
Alvin Lee, IHS Markit
Andrew Buay, Singtel
Angeline Chan, DP Architects
Arkit Joshi, NUS Deltares
Cesar Rocha, AECOM
Chan Eu Jin, National Climate Change Secretariat
Chua Boon Bee, Singtel
Diana Chin, Urban Redevelopment Authority
Esther Ar, City Developments Limited
Govinda Singh, Colliers International
Ho Chai Teck, Building and Construction Authority
Ira Martina Drupady, Energy Studies Institute
Jen Teo, Singapore Environment Council
Jeremy Ng, Singapore Youth for Climate Action
Jonathan Denis-Jacob, Colliers International
Khoo Teng Chye, CLC
Lauren Sorkin, Resilient Cities Network
Lee Ai Ling, Keppel Urban Solutions
Lee Gek Lang, PGIM Real Estate
Lynette Leong, CapitaLand Group
Mallory Taub, Gensler
Michaela Winter-Taylor, Gensler
Nora Prins, APFM Management
Piet Dircke, Arcadia
Pieter Roosenboom, CBRE
Richard Hamilton-Grey, Nuveen
Robert Dijksterhuis, Ministry of the Interior and Kingdom Relations
Tanja Lina, Tussentuin Foundation
Wouter Dijkman, CBRE

New York

Aaron Ordower, Mayor’s Office of Sustainability
Amy Leitch, Arup
Amy Chester, Rebuild by Design
Andrew Salln, Resilient Cities Catalyst
BJ Jones, Battery Park City Authority
Breama Gribble, STV Inc.
Brian Geller, The Durst Organisation
Christian Braneau, New York City Panel on Climate Change
Dan Egan, Vornado Realty Trust
Dana Getman, SHoP Architects
Dana Kochnow, Mayor’s Office of Resiliency
Dana Schneider, Empire State Realty Trust
Daniel McPhee, Urban Design Forum
David Brielof, Gensler
Despo Thoma, SCAPE Studio
Eliajp Hutchinson, Economic Development Corporation
Eric Funasawa, HR&A Advisors
Eric Klinenburg, New York University

Hong Kong

Albert Lee, Hong Kong Civil Engineering and Development Department
Ashley Heglad, Swire Properties
Calvin Kwan, Link REIT
Colin Galloway, ULI
Ellie Tang, New World Development
Elvis Au, Hong Kong Environmental Protection Department
Ir. Cary Chan, Hong Kong Green Building Council
Irvin Chung, Hong Kong Planning Department
Kristy Wong, Bank of America
Margaret Kam, Hong Kong Green Building Council
Nicholas Brooke, Professional Property Services Limited
Professor KK Ling, Jockey Club Design Institute of Social Innovation
Raymond Lee, Hong Kong Planning Department

References

This publication provides a framework and practical guide for cities to enhance their climate resilience in cooperation with the private sector. It draws examples of coastal city strategies and investments in the United States, Europe, and Asia to document international best practices, propose principles for stronger public-private cooperation, and evaluate approaches that are transferable based on a city’s context or risk profile. Covering both municipal and business perspectives, with a focus on the built environment, real estate, finance, and insurance sectors, the research carries an eye toward mobilising funding and governance structures to effectively support climate resilience. A series of workshops in the case study cities with stakeholders from the government, industry, academia, and the non-profit sectors, as well as interviews with businesses on climate resilience strategies, were conducted to gather the insights.