

Pumping Up Sustainability: Embracing Heat Pumps in Commercial Real Estate

SEPTEMBER 20TH, 2024

ULI Net Zero Mission Priority Decarbonizing the real estate sector and accelerating our progress to net zero

Defining Net Zero

A net zero building portfolio is highly efficient and fully powered by on-site and off-site renewable energy sources and offsets

Urban Land Institute

Panelists

Jonathan Arnold Principal Arnold Development

Laura Humphrey Senior Director of Energy and Sustainability L+M Development Partners

Stet Sanborn, VP Director of Climate Impact SmithGroup

How do heat pumps work?

Myths Around Heat Pumps in Commercial Developments

- MYTH 1: Heat pumps are not cost-effective, and my utility bill will go up by switching to heat pumps.
- □ MYTH 2: Heat pumps are not a viable option for properties in cold climates.
- AYTH 3: Heat pumps are not commercially proven; they are too new.
- MYTH 4: Heat pumps are only for single-family homes or small commercial and don't work for mid-rise, high-rise, or industrial properties.
- □ MYTH 5: Heat pumps can only be implemented in new construction, not in retrofits.
- □ MYTH 6: Electric heat pumps do not heat as well as gas systems.
- □ MYTH 7: There is only one type of heat pump.
- □ MYTH 8: Heat pumps are too loud and take up too much space.

Myth 1: Heat pumps are not cost-effective, and my utility bill will go up by switching to heat pumps.

Arnold Development Group

Energy Efficient - Transit Oriented - Mixed-Income

ad ARNOLD DEVELOPMENT

Second and Delaware

276 Unit Passive House Development 55,000 SF Courtyard and Rooftop Gardens Winner of NAA Best New Community Award

Closing the Financing Gap with Sustainable Design

The "Lowest First Cost" approach makes that gap worse. Energy efficient, resilient buildings have lower operating costs and qualify for lower cost capital, resulting in a smaller financing gap.

Passive House: Cost Effective Energy Efficiency

The projects in the pipeline will be built to the Passive House standard, which results in 60-90% reduction in energy consumption.

Code Based Building Building Size 277,512 SF Site Energy **40,703,695** kBtu/yr

Passive House Building (KC Prototype)

321,096 SF

Building Size Site Energy

7,581,734 kBtu/yr ← 84% less energy per square foot

Heat Pump Plus Geothermal

When a heat pump is combined with a geothermal heating and cooling system the entire HVAC system goes into the basis of calculating the tax credits.

		Market Rate			Low to Moderate Income		
	, 	Cost Per Unit	Cost Per Foot		Cost Per Unit	Cost Per Foot	
Geothermal Wells		20,404	17.00		20,404	17.00	
Heat Pump		14,300	11.92		14,300	11.92	
Total Mechanical Cost		34,704	28.92		34,704	28.92	
ITC Base Credit	30%	(10,411.31)	-8.68		(10,411.31)	(8.68)	
ITC American Content Boost	10%	(3,470.44)	-2.89		(3,470.44)	(2.89)	
LIHTC (4% @\$0.85)	40%	N/A	N/A		(11,799.49)	(9.83)	
45L Tax Credit		(1,000.00)	-0.83		(1,000.00)	(0.83)	
DOE Rebate Heat Pumps		(4,000.00)	-3.33		(8,000.00)	(6.67)	
Total Cost After Incentives		15,823	13.19		23	0.02	

Capitalizing on Energy and Operational Savings

We include a market rate utility cost to each unit's rent, which allows the energy savings to finance the cost of the energy efficient features.

Conventional Stick		Pas	Passive House / Concrete			
Concrete	40	Сог	ncrete	85	45	
Wood	24	Wo	bod	1	(23)	
Insulation	1	Ins	ulation	3	2	
Windows	4	Wi	ndows	8	4	
Floor	5	Flo	or	2	(2)	
Drywall	10	Dry	/wall	8	(2)	
Exterior	13	Ext	erior	10	(3)	
Mechanical	8	Me	echanical	13	5	
Green Roof	-	Gre	een Roof	4	4	
Other Costs	88	Otł	ner Costs	88	2. 	
GC Fees	30	GC	Fees	30	-	
Total	223	Tot	tal	252	29	

.

Increased Cost	\$ 9,387,084	\$	29
Energy Savings	410,796		
Insurance Savings	215,368		
Reduced Painting Costs	41,400		
Garden Plot Rentals	14,040		
Rooftop Event Rentals	96,000		
Total Additional NOI	777,604		
Cap Rate	5.50%	3	
Added Value	14,138,248	\$	44
Net Increase in Value	4,751,164	\$	15

Electricity Savings

Median Market Utility / Mo	PH Utilities / Mo	Savings / Mo	Mos / Yr	Savings / Unit Per Year	Savings Per Year	Cap Rate	Value of Savings	Value Per SF	Cost of Improvements	Net Increase in Value
197.43	73.39	124.03	12	1,488	410,796	5.50%	\$ 7,469,012	\$ 23.26	\$ (9,387,084)	\$ (1,918,073)

113%

MYTHS AROUND HEAT PUMPS IN COMMERCIAL DEVELOPMENTS

Myth 2: Heat pumps are not a viable option for properties in cold climates

SIMPLE REPLACEMENTS - IN COLD CLIMATES SMALL OFFICES, SCHOOLS, ETC

Heat Pump Rooftop Package Units

Considerations & Strategies:

- Integrated HRV/ERV
- Select for Correct OAT
- Minimize Electric Resistance Heating

COLD CLIMATE HEAT PUMPS → SANITARY WASTE ENERGY EXCHANGE DOMESTIC HOT WATER: THE POWER OF POOP

SMITHGROUP

Electrification

COLD CLIMATE HEAT PUMP \rightarrow GROUND SOURCE! OPTIMIZE THE EQUIPMENT

COLD CLIMATE HEAT PUMP → GROUND SOURCE!

ENERGY STAR... Proposed Design

MYTHS AROUND HEAT PUMPS IN COMMERCIAL DEVELOPMENTS

Myth 4: Heat pumps are only for single-family homes or small commercial and don't work for mid-rise, high-rise, or industrial properties.

Myth 4: Community Scale Heat Pumps Alafia, Brooklyn

Highlights

- Community-scale, multi-phase development across 28 acres
- >2.2 million SF
 - 2,400 affordable and supportive housing units
 - 15K SF healthcare clinic
- All buildings will have individual geothermal systems for all thermal loads

MEDIUM OFFICE AND SIMILAR VAV/REHEAT SYSTEMS

Considerations & Strategies:

- Consider Heat Recovery Heat Pump Integrated with AHU & Reheat Loop
- Integrated HRV/ERV

CENTRAL CHILLER / BOILERS WITH HYDRONIC SYSTEMS

6, 4 and 2-pipe ASHP's

Heat Recovery Chillers

Considerations & Strategies:

- Maximize Heat Recovery
- Consider adding Thermal Energy Storage to increase Heat Recovery Potential
- Consider adding TES for shifting heating load into daytime hours
- Footprint will be challenging
- Consider Augmenting with Ground-Source Heat Exchange
- Can be challenging to maintain consistent Delta T

CENTRAL CHILLER / BOILERS WITH HYDRONIC SYSTEMS

Myth 5: Heat pumps can only be implemented in new construction, not in retrofits.

Myth 7: There is only one type of heat pump

Myth 7: Heat Pumps in New Construction

L+M has used heat pumps in large multifamily construction since 2018

Clockwise from the top left: Beach Green II – geothermal, Sendero Verde - VRF, Marcus Garvey Extension, geothermal

Myth 7: Heat Pumps in New Construction

L+M is starting to apply heat pumps in building renovations, even when residents are in place

Harlem River NYCHA PACT Renovation

Myth 7: Heat Pumps in Existing Buildings

L+M is starting to apply heat pumps in building renovations, even when residents are in place

Harlem River NYCHA PACT Renovation

Myths Around Heat Pumps in Commercial Developments

- HYTH 1: Heat pumps are not cost-effective, and my utility bill will go up by switching to heat pumps.
- HYTH 2: Heat pumps are not a viable option for properties in cold climates.
- □ MYTH 3: Heat pumps are not commercially proven; they are too new.
- HYTH 4: Heat pumps are only for single-family homes or small commercial and don't work for mid-rise, high-rise, or industrial properties.
- HYTH 5: Heat pumps can only be implemented in new construction, not in retrofits.
- □ MYTH 6: Electric heat pumps do not heat as well as gas systems.
- ➡ MYTH 7: There is only one type of heat pump.
- □ MYTH 8: Heat pumps are too loud and take up too much space.

Pumping Up Sustainability

MYTH-BUSTING HEAT PUMPS IN COMMERCIAL REAL ESTATE

Jonathan Arnold jarnold@arnolddevelopmentgroup.com

Laura Humphrey Ihumphrey@Imdp.com

Kara Kokernak Kara.Kokernak@uli.org

Stet Sanborn Stet.Sanborn@smithgroup.com

